Differentiation Quiz
Each question shows a cubic function. Choose the correct derivative.
Calculus — Ordinary Level (Examples & Practice)
Max/min questions use quadratics only. For cubics, you may be asked for slope or tangent elsewhere (not on this sheet).
Differentiate by rule
Use the power rule: \(\dfrac{\mathrm{d}}{\mathrm{d}x}(x^n)=nx^{\,n-1}\). Differentiate term-wise; constants vanish.
Example
Find \(f'(x), g'(x), h'(x)\), and the second derivative \(H''(x)\):
\[ \text{(i) } f(x)=3x+7,\quad \text{(ii) } g(x)=2x^2-5x+1,\quad \text{(iii) } h(x)=x^3-6x^2+4x-9,\quad H(x)=4x^3-3x^2+2x-5. \]
- \(f'(x)=3\)
- \(g'(x)=4x-5\)
- \(h'(x)=3x^2-12x+4\)
- \(H'(x)=12x^2-6x+2\Rightarrow H''(x)=24x-6\)
Practice
\[ p(x)=5x-4,\quad q(x)=x^2+6x-3,\quad r(x)=2x^3+x^2-7x+8. \] Find \(p'(x),\,q'(x),\,r'(x)\) and \(r''(x)\).
\(p'(x)=5,\quad q'(x)=2x+6,\quad r'(x)=6x^2+2x-7,\quad r''(x)=12x+2.\)
Slopes and tangent lines
Slope at \(x=a\) is \(\left.\dfrac{\mathrm{d}y}{\mathrm{d}x}\right|_{x=a}\). Tangent: \(y-y_1=m(x-x_1)\).
Example
Let \(y=x^2+2x-3\). Find \(\dfrac{\mathrm{d}y}{\mathrm{d}x}\) at \(x=2\) and the tangent equation there.
\(\dfrac{\mathrm{d}y}{\mathrm{d}x}=2x+2\Rightarrow m=6\) at \(x=2\). Point: \(y(2)=5\Rightarrow(2,5)\). Tangent: \(y-5=6(x-2)\Rightarrow y=6x-7\).
Practice
For the function \(y=x^3-x\), find the slope at \(x=1\) and the tangent equation there.
\(\dfrac{\mathrm{d}y}{\mathrm{d}x}=3x^2-1\Rightarrow m=2\) at \(x=1\). Point \((1,0)\). Tangent: \(y=2x-2\).
Rates of change
Interpret derivatives as rates: \(v(t)=\dfrac{\mathrm{d}s}{\mathrm{d}t}\), \(a(t)=\dfrac{\mathrm{d}v}{\mathrm{d}t}\); or \(\dfrac{\mathrm{d}}{\mathrm{d}x}\) of a formula.
Example
The distance is \(s=4t^2+2t\) m after \(t\) s. Find \(v(t)\), \(a(t)\), and \(v(3)\).
\(v(t)=\dfrac{\mathrm{d}s}{\mathrm{d}t}=8t+2,\quad a(t)=\dfrac{\mathrm{d}v}{\mathrm{d}t}=8.\) Hence \(v(3)=26\,\text{m s}^{-1}\).
Practice
Area of a circle: \(A=\pi r^2\). Find \(\dfrac{\mathrm{d}A}{\mathrm{d}r}\) and evaluate at \(r=5\).
\(\dfrac{\mathrm{d}A}{\mathrm{d}r}=2\pi r\Rightarrow 10\pi\) at \(r=5\).
Minimum value & minimum point
Solve \(\dfrac{\mathrm{d}y}{\mathrm{d}x}=0\) to get the turning point \(x\)-value, then substitute to find the minimum value and the minimum point. (No use of the second derivative is required.)
Example
Find the minimum value of \(y=x^2-6x+5\) and the corresponding minimum point.
\(\dfrac{\mathrm{d}y}{\mathrm{d}x}=2x-6=0\Rightarrow x=3\). Minimum value \(=y(3)=9-18+5=-4\). Minimum point \(=(3,-4)\).
Practice
Let \(h(t)=t^2-4t+7\). Find the minimum value of \(h(t)\) and the minimum point \((t,h(t))\).
\(\dfrac{\mathrm{d}h}{\mathrm{d}t}=2t-4=0\Rightarrow t=2\). Minimum value \(=h(2)=4-8+7=3\). Minimum point \(=(2,3)\).
Video Tutorials
Slope and Equation of a Tangent
Show video
Show worked solution
Displacement, Velocity and Acceleration
Find:
- the speed after 2 seconds,
- after how many seconds the body is at rest,
- the acceleration after 2 seconds.
Show video
Show worked solution
Finding the Minimum Value
How many items should be produced to keep the overhead costs to a minimum?