eMaths.ie
  • Home
    • Contact
    • Revision Notes
    • 150 HL Revision Questions
    • Exam Layout
    • T&T Solutions
    • Calculators
    • Geogebra
    • Formulae and Tables Book
    • Applied Maths
    • Projectmaths.ie
  • HL Paper 1
    • Algebra 1
    • Algebra 2
    • Algebra 3
    • Financial Maths
    • Algebra Overview
    • Proof by Induction
    • Functions
    • Graphing Polynomials
    • Differentiation
    • Integration
    • Sequences & Series
    • Arithmetic and Money
    • Number Systems
    • Complex Numbers
    • Paper 1 - Must Learn
  • HL Paper 2
    • Probability
    • Statistics
    • Geometry
    • Area and Volume
    • The Line & Circle
    • Trigonometry Overview
    • Trigonometry 1
    • Trigonometry 2
    • Paper 2 - Must Learn
  • HL Exam Papers
    • Printable Exam Questions
    • Exam Question Solutions & Marks
    • Molloy Maths LCHL Exam Videos
    • Revision Questions
  • OL Topics
    • OL Algebra
    • OL Complex Numbers
    • OL Calculus
    • OL Normal Curve and Hypothesis Testing
    • OL Statistics

Argand Diagram Quiz — Name the Complex Number

Select the correct complex number \(a+bi\) for the plotted point.

Re Im
Question
Score: 0 / 0
© eMaths.ie

Complex Numbers — Key Notes & Practice

All complex numbers are written in the form a + bi, where i2 = −1. Answers should be simplified to this form.

Key skills
  • Add, subtract, multiply, and divide complex numbers.
  • Use conjugates; know that \(z\overline{z}\) is real.
  • Find the modulus as distance from the origin.
  • Solve quadratics with complex roots.
  • Solve equations by equating real and imaginary parts.
Jump to a section
  • 1. Addition & subtraction
  • 2. Multiplication
  • 3. Conjugates
  • 4. Division
  • 5. Modulus
  • 6. Quadratic equations
  • 7. Solving equations by equating real & imaginary
1

Addition and subtraction

Combine real parts together and imaginary parts together.

Example: Simplify \( (3+2i) + (5-7i) \).
Real: \(3+5=8\)
Imaginary: \(2i-7i=-5i\)
Answer: \(8-5i\)
Practice: Simplify \( (4-3i) - (1+5i) \).
Real: \(4-1=3\)
Imaginary: \(-3i-5i=-8i\)
Answer: \(3-8i\)
2

Multiplication

Use an area/array model (2×2 grid), then combine real and imaginary parts (remember \(i^2=-1\)).

Example: \( (2+3i)(4-i) \)
Area model:
\(4\)\(-\,i\)
\(2\)\(8\)\(-2i\)
\(3i\)\(12i\)\(-3i^2\)
Real: \(8+(-3i^2)=8+3=11\)
Imaginary: \(-2i+12i=10i\)
Answer: \(11+10i\)
Practice: \( (1-2i)(3+i) \)
Area model:
\(3\)\(i\)
\(1\)\(3\)\(i\)
\(-2i\)\(-6i\)\(-2i^2\)
Real: \(3+(-2i^2)=3+2=5\)
Imaginary: \(i-6i=-5i\)
Answer: \(5-5i\)
3

Conjugates

The conjugate of \(a+bi\) is \(a-bi\). Then \(z\overline{z}=(a+bi)(a-bi)=a^2+b^2\) (real).

Example: For \(z=4-3i\), show \(z\overline{z}\) is real.
\((4-3i)(4+3i)=4^2-(3i)^2=16-9i^2\)
\(=16+9=25\in\mathbb{R}\)
Practice: If \(z=2+5i\), find \(z\overline{z}\).
\((2+5i)(2-5i)=2^2-(5i)^2=4-25i^2=29\)
4

Division

The conjugate of \(c+di\) is \(c-di\). Multiply numerator and denominator by \(c-di\):

\[ \frac{a+bi}{\,c+di\,} \;=\; \frac{(a+bi)(c-di)}{(c+di)(c-di)}. \]

Example: \(\displaystyle \frac{5+2i}{\,2-i\,}\)
Multiply top and bottom by the conjugate \(2+i\):
\[ \frac{5+2i}{2-i}\cdot\frac{2+i}{2+i} =\frac{(5+2i)(2+i)}{(2-i)(2+i)}. \]
Numerator area model \((5+2i)(2+i)\)
\(2\)\(i\)
\(5\)\(10\)\(5i\)
\(2i\)\(4i\)\(2i^2\)
Denominator area model \((2-i)(2+i)\)
\(2\)\(i\)
\(2\)\(4\)\(2i\)
\(-i\)\(-2i\)\(-i^2\)
Numerator: \(10+5i+4i+2i^2=8+9i\)
Denominator: \(4+(-i^2)=4+1=5\)
Answer: \(\displaystyle \frac{8+9i}{5}= \frac{8}{5}+\frac{9}{5}i\)
Practice: \(\displaystyle \frac{3-4i}{\,1+2i\,}\)
Multiply top and bottom by the conjugate \(1-2i\):
\[ \frac{3-4i}{1+2i}\cdot\frac{1-2i}{1-2i} =\frac{(3-4i)(1-2i)}{(1+2i)(1-2i)}. \]
Numerator area model \((3-4i)(1-2i)\)
\(1\)\(-2i\)
\(3\)\(3\)\(-6i\)
\(-4i\)\(-4i\)\(8i^2\)
Denominator area model \((1+2i)(1-2i)\)
\(1\)\(-2i\)
\(1\)\(1\)\(-2i\)
\(2i\)\(2i\)\(-4i^2\)
Numerator: \(3-6i-4i+8i^2=-5-10i\)
Denominator: \(1-4i^2=1+4=5\)
Answer: \(-1-2i\)
5

Modulus

For \(z=a+bi\), the modulus is \(|z|=\sqrt{a^2+b^2}\) — the distance from the origin.

Example: Find \(|6-8i|\).
\(|6-8i|=\sqrt{6^2+(-8)^2}\)
\(\phantom{|6-8i|}=\sqrt{36+64}\)
\(\phantom{|6-8i|}=\sqrt{100}=10\)
Practice: Find \(|3+4i|\).
\(|3+4i|=\sqrt{3^2+4^2}=\sqrt{9+16}=\sqrt{25}=5\)
6

Quadratic equations with complex roots

When the discriminant \(b^2-4ac<0\), roots are complex.

Example: Solve \(x^2+2x+5=0\).
Quadratic formula: \(x=\dfrac{-b\pm\sqrt{\,b^2-4ac\,}}{2a}\)
Substitute: \(a=1,\;b=2,\;c=5\)
\(x=\dfrac{-(2)\pm\sqrt{\,(2)^2-4(1)(5)\,}}{2(1)}\)
\(=\dfrac{-2\pm\sqrt{-16}}{2}=\dfrac{-2\pm 4i}{2}=-1\pm2i\)
Practice: Solve \(x^2+4x+13=0\).
Quadratic formula: \(x=\dfrac{-b\pm\sqrt{\,b^2-4ac\,}}{2a}\)
Substitute: \(a=1,\;b=4,\;c=13\)
\(x=\dfrac{-(4)\pm\sqrt{\,(4)^2-4(1)(13),}}{2(1)}\)
\(=\dfrac{-4\pm\sqrt{-36}}{2}=\dfrac{-4\pm 6i}{2}=-2\pm3i\)
7

Solving complex equations by equating real and imaginary parts

Let \(z=a+bi\). Substitute and compare the real and imaginary parts separately.

Example: If \(2z+(3-i)=7+4i\), find \(a\) and \(b\).
\(2(a+bi)+(3-i)=(2a+3)+(2b-1)i\)
Compare with \(7+4i\)
Real: \(2a+3=7\Rightarrow a=2\)
Imaginary: \(2b-1=4\Rightarrow b=2.5\)
Therefore: \(z=2+2.5i\)
Practice: If \(z-(1+2i)=3-i\), find \(a,b\) where \(z=a+bi\).
\((a-1)+(b-2)i=3-i\)
Real: \(a-1=3\Rightarrow a=4\)
Imaginary: \(b-2=-1\Rightarrow b=1\)

© eMaths.ie — Complex Numbers Revision Notes

Argand Quiz — Which Has the Greater Modulus?

Two complex numbers \(z\) and \(w\) are shown. Each sits on a grey dotted circle centred at the origin. Choose the one with the larger modulus (radius).

Re Im
z w dotted circle shows modulus
Question
Score: 0 / 0
© eMaths.ie

Video Tutorials


Addition and Multiplication

Division 

Argand Diagram and Modulus

Quadratic Equations with Complex Roots (Solutions)

Solving Complex Equations by Equations

Complex Numbers — Extra Questions

1) Addition & subtraction

Q. Simplify \( (7-5i) + (-3+2i) - (1-6i) \) to the form \( a+bi \).

\[ \text{Real part: } 7+(-3)-1=3 \] \[ \text{Imaginary part: } (-5i)+2i+6i=3i \] \[ \boxed{\,3+3i\,} \]
2) Multiplication — area model

Q. Find \( (3+2i)(4-i) \).

Area model:
\(4\)\(-\,i\)
\(3\) \(12\) \(-\,3i\)
\(2i\) \(8i\) \(-\,2i^{2}\)
\[ \text{Real terms: } 12 + (-2i^{2}) = 12 + 2 = 14 \] \[ \text{Imaginary terms: } -3i + 8i = 5i \] \[ \boxed{\,14 + 5i\,} \]
3) Conjugate — product is real

Q. Let \( z=-2+7i \). Show that \( z\overline z \) is real and find its value.

\[ \overline z=-2-7i \] \[ z\overline z = (-2)^2 + 7^2 = 4 + 49 = 53 \] \[ \boxed{\,53\in\mathbb{R}\,} \]
4) Division (multiply by the conjugate)

Q. Write \( \dfrac{8-2i}{3+i} \) in the form \( a+bi \).

Conjugate step: multiply top and bottom by \(3-i\):
\[ \frac{8-2i}{3+i}\cdot\frac{3-i}{3-i} =\frac{(8-2i)(3-i)}{(3+i)(3-i)}. \]
Numerator area model \((8-2i)(3-i)\)
\(3\)\(-i\)
\(8\)\(24\)\(-8i\)
\(-2i\)\(-6i\)\(2i^2\)
Denominator area model \((3+i)(3-i)\)
\(3\)\(-i\)
\(3\)\(9\)\(-3i\)
\(i\)\(3i\)\(-\,i^2\)
\[ \text{Numerator: } 24-8i-6i+2i^2=22-14i \] \[ \text{Denominator: } 9+(-i^2)=10 \] \[ \frac{8-2i}{3+i}=\frac{22-14i}{10} =\frac{11}{5}-\frac{7}{5}i \] \[ \boxed{\,\tfrac{11}{5}-\tfrac{7}{5}i\,} \]
5) Modulus

Q. Find \( |\, -6+8i \,| \).

\[ |z|=\sqrt{a^{2}+b^{2}} \] \[ |\, -6+8i \,|=\sqrt{(-6)^{2}+8^{2}}=\sqrt{36+64}=\sqrt{100}=10 \] \[ \boxed{\,10\,} \]
6) Quadratic with complex roots

Q. Solve \( x^{2}+6x+25=0 \).

\[ \textbf{Quadratic formula:}\quad x=\dfrac{-b\pm\sqrt{\,b^{2}-4ac\,}}{2a} \] \[ \textbf{Substitute:}\ a=1,\ b=6,\ c=25 \] \[ x=\dfrac{-6\pm\sqrt{\,6^{2}-4(1)(25)\,}}{2(1)} \] \[ =\dfrac{-6\pm\sqrt{-64}}{2} \] \[ \boxed{\,x=-3\pm4i\,} \]
7) Equating real & imaginary parts

Q. If \( z=a+bi \) satisfies \( 3z-(2-i)=10+5i \), find \( a \) and \( b \).

\[ 3(a+bi)-(2-i)=(3a-2)+(3b+1)i \] \[ \text{Real: } 3a-2=10 \ \Rightarrow\ a=4 \] \[ \text{Imaginary: } 3b+1=5 \ \Rightarrow\ b=\dfrac{4}{3} \] \[ \boxed{\,z=4+\dfrac{4}{3}i\,} \]
© eMaths.ie
Powered by Create your own unique website with customizable templates.