Complex numbers

Section 3.1 Irrational numbers

What is an irrational number - give an example? It is a number that can't be written as a fraction with 2 integers. e.g. $\sqrt{2}$ or π

Number Systems

Imaginary Numbers

What is the imaginary unit?

$$i = \sqrt{-1}$$
$$\Rightarrow i^2 = -1$$

Section 3.2 Complex numbers

A Complex Number is a combination of a Real Number and an Imaginary Number

Exercise 3.2 -

1. Write each of the following numbers in terms of i:

(i)
$$\sqrt{-4}$$
 (ii) $\sqrt{-36}$ (iii) $\sqrt{-27}$ (iv) $\sqrt{-20}$ = $\sqrt{(-1)(4)}$ = $\sqrt{(-1)(36)}$ = $\sqrt{(-1)(27)}$ = $\sqrt{(-$

9. Complete the table, given that $i = \sqrt{-1}$ and $i^2 = -1$.

$$i = i^{1} = i$$

$$i \times i = i^{2} = -1$$

$$i \times i \times i = i^{3} = -1$$

$$i \times i \times i \times i = i^{4} = 1$$

$$i \times i \times i \times i \times i = i^{5} = 1$$

$$i \times i \times i \times i \times i \times i = i^{6} = -1$$

Describe the pattern formed from this sequence.

What strategy could be used to simplify i^n , $n \in \mathbb{N}$? [e.g., i^{32} .]

$$i^{32} = (i^4)^8 = i^8 = i$$

10. Simplify each of the following:

HW

- (ii) i^{11}
- (iii) *i* ¹⁹

- (iv) i^{21} (v) i^{-4}

11. Simplify the following:

HW

(i) $i^{16} + i^{10} + i^6 - i^{12}$

(ii) $i^3 - i^{11} + i^{17} - i^{29}$

Example 1

Solve the equation $x^2 + 25 = 0$.

$$\chi^2 = -25$$

$$X = \sqrt{-25}$$

$$x = 5i$$

$$i = \sqrt{-1}$$
$$\Rightarrow i^2 = -1$$

2. Solve each of the following equations, giving your answer in the form bi, where b is a real number.

(i)
$$x^2 + 9 = 0$$

(ii)
$$x^2 + 12 = 0$$

Example 2

Solve the equation $x^2 + 2x + 2 = 0$.

$$a=1 b=2 c=2 x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = -\frac{2 \pm \sqrt{2} - 4(1)(2)}{2(1)}$$

$$= -2 \pm \sqrt{4 - 8} = -2 \pm \sqrt{4} = -1 \pm i$$

$$= -2 \pm \sqrt{4 - 8} = -2 \pm \sqrt{4} = -1 \pm i$$

note: the 2 imaginary solutions are conjugates

7. Solve each of the following equations using the quadratic formula and give your answer in the form a + bi, $a, b \in R$:

(i)
$$x^2 - 2x + 17 = 0$$

(i)
$$x^2 - 2x + 17 = 0$$
 (ii) $x^2 - 4x + 13 = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Solve each of the following equations using the quadratic formula and give your answer in the form a + bi, $a, b \in R$:

(iii)
$$x^2 - 10x + 26 = 0$$
 (iv) $x^2 - 8x + 52 = 0$

(iv)
$$x^2 - 8x + 52 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

8. Solve the equation $2z^2 - 8z + 9 = 0$.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 ω

Example 3

If $z_1 = 2 + 3i$, $z_2 = 3 - 4i$ and $z_3 = 1 + 5i$, express each of the following complex numbers in the form a + bi.

- (i) $z_1 + z_3$
- (ii) $z_2.z_3$

(iii) $z_1(z_2 + z_3)$