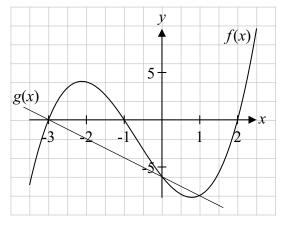

Question 1

(25 marks)

(a) The graph of a cubic function f(x) cuts the x-axis at x = -3, x = -1 and x = 2, and the y-axis at (0, -6), as shown.

Verify that f(x) can be written as

$$f(x) = x^3 + 2x^2 - 5x - 6.$$


- (b) (i) The graph of the function g(x) = -2x 6 intersects the graph of the function f(x) above. Let f(x) = g(x) and solve the resulting equation to find the co-ordinates of the points where the graphs of f(x) and g(x) intersect.
 - (ii) Draw the graph of the function g(x) = -2x 6 on the diagram above.

Question 1 (25 marks)

(a) The graph of a cubic function f(x) cuts the x-axis at x = -3, x = -1 and x = 2, and the y-axis at (0, -6), as shown.

Verify that f(x) can be written as

$$f(x) = x^3 + 2x^2 - 5x - 6.$$

$$x = -3$$
, $x = -1$, $x = 2$
 $f(x) = (x+3)(x+1)(x-2) = x^3 + 2x^2 - 5x - 6$

OR

$$f(x) = x^3 + 2x^2 - 5x - 6$$

$$f(-3) = -27 + 18 + 15 - 6 = 0 \Rightarrow (x+3)$$
 is a factor

$$f(-1) = -1 + 2 + 5 - 6 = 0 \Rightarrow (x+1)$$
 is a factor

$$f(2) = 8 + 8 - 10 - 6 = 0 \Rightarrow (x - 2)$$
 is a factor

$$f(x) = (x+3)(x+1)(x-2) = x^3 + 2x^2 - 5x - 6$$

(b) (i) The graph of the function g(x) = -2x - 6 intersects the graph of the function f(x) above. Let f(x) = g(x) and solve the resulting equation to find the co-ordinates of the points where the graphs of f(x) and g(x) intersect.

$$f(x) = g(x)$$

$$x^{3} + 2x^{2} - 5x - 6 = -2x - 6$$

$$\Rightarrow x^{3} + 2x^{2} - 3x = 0$$

$$\Rightarrow x(x^{2} + 2x - 3) = 0$$

$$\Rightarrow x(x - 1)(x + 3) = 0$$

$$\Rightarrow x = 0, \quad x = 1, \quad x = -3$$

$$\Rightarrow y = -6, \quad y = -8, \quad y = 0$$

Points: (-3, 0), (0, -6), (1, -8)

(ii) Draw the graph of the function g(x) = -2x - 6 on the diagram above.

$$g(x) = -2x - 6$$

$$g(-3) = -2(-3) - 6 = 6 - 6 = 0 \Rightarrow (-3, 0)$$

$$g(0) = -2(0) - 6 = -6 \Rightarrow (0, -6)$$

Detailed marking notes

Section A

Question 1

- (a) Scale 15C (0, 7, 10, 15) Low Partial Credit:
 - Only one value verified
 - Recognising one factor

High Partial Credit:

- Writing (x+3)(x+1)(x-2)
- Two relevant roots tested
- (b)(i) Scale 5C (0, 3, 4, 5) Low Partial Credit:
 - Equations correct when f(x) = g(x)
 - Cubic equation not factorised

High Partial Credit:

- Roots identified
- Scale 5C (0, 3, 4, 5) (b)(ii) Low Partial Credit:

- One point found in g(x)
- Only one point indicated on graph

High Partial Credit:

- Two points identified
- Two points plotted but no graph drawn