Question 2

Let $z_{1}=1-2 i$, where $i^{2}=-1$.
(a) The complex number z_{1} is a root of the equation $2 z^{3}-7 z^{2}+16 z-15=0$. Find the other two roots of the equation.
(b) (i) Let $w=z_{1} \bar{z}_{1}$, where \bar{z}_{1} is the conjugate of z_{1}. Plot z_{1}, \bar{z}_{1} and w on the Argand diagram and label each point.

(ii) Find the measure of the acute angle, $\bar{z}_{1} w z_{1}$, formed by joining \bar{z}_{1} to w to z_{1} on the diagram above. Give your answer correct to the nearest degree.

Let $z_{1}=1-2 i$, where $i^{2}=-1$.
(a) The complex number z_{1} is a root of the equation $2 z^{3}-7 z^{2}+16 z-15=0$.

Find the other two roots of the equation.
$z_{1}=1-2 i$ a root $\Rightarrow \bar{z}_{1}=1+2 i$ a root.
$(z-1+2 i)(z-1-2 i)=z^{2}-2 z+5$, a factor
Hence, $\left(z^{2}-2 z+5\right)(a z+b)=2 z^{3}-7 z^{2}+16 z-15$
Equate coefficients: $a=2$ and $b-2 a=-7 \Rightarrow b=-3$
Third factor: $2 z-3 \Rightarrow z=\frac{3}{2}$
Or
$\left(2 z^{3}-7 z^{2}+16 z-15\right) \div\left(z^{2}-2 z+5\right)=2 z-3$
Third factor: $2 z-3 \Rightarrow z=\frac{3}{2}$
Other roots: $z_{2}=1+2 i, z_{3}=\frac{3}{2}$
(b) (i) Let $w=z_{1} \cdot \bar{z}_{1}$, where \bar{z}_{1} is the conjugate of z_{1}. Plot z_{1}, \bar{z}_{1} and w on the Argand diagram and label each point.

$$
\begin{aligned}
w & =(1-2 i)(1+2 i) \\
& =5
\end{aligned}
$$

(ii) Find the measure of the acute angle, $\bar{z}_{1} w z_{1}$, formed by joining \bar{z}_{1} to w to z_{1} on the diagram above. Give your answer correct to the nearest degree.
$\tan \frac{1}{2} \angle \bar{z}_{1} w z_{1}=\frac{2}{4} \Rightarrow \frac{1}{2}\left|\angle \bar{z}_{1} w z_{1}\right|=26 \cdot 57 \Rightarrow\left|\angle \bar{z}_{1} w z_{1}\right|=53 \cdot 14 \approx 53^{\circ}$
OR

$\left|z_{1} w\right|=\sqrt{(0+2)^{2}+(5-1)^{2}}=\sqrt{16+4}=\sqrt{20}$
$\left|z_{1} w\right|=\sqrt{20} \quad\left|\bar{z}_{1} w\right|=\sqrt{20} \quad\left|\bar{z}_{1} z_{1}\right|=4$

Cosine rule:

$$
\begin{aligned}
& 4^{2}=(\sqrt{20})^{2}+(\sqrt{20})^{2}-2(\sqrt{20})(\sqrt{20}) \cos \theta \\
& 40 \cos \theta=24 \\
& \cos \theta=\frac{24}{40}=0 \cdot 6 \\
& |\theta|=53 \cdot 13 \approx 53^{\circ}
\end{aligned}
$$

Question 2

(a) \quad Scale 5D (0, 2, 3, 4, 5)

Low Partial Credit:

- Identifies another root
- Forms an equation

Mid Partial Credit:

- Works with correct quadratic factor
- Indicates division of quadratic into cubic

High Partial Credit:

- Finds third factor
(b)(i) Scale 10C (0, 5, 7, 10)

Low Partial Credit:

- Plots one point correctly
- Finds \bar{z}_{1}

High Partial Credit:

- Points plotted but not labelled or labelled incorrectly
- Two points plotted and labelled
- Calculates w
(b)(ii) Scale 10C (0, 5, 7, 10)

Low Partial Credit:

- Length of any one side of triangle calculated correctly
- Correct definition of trig ratio
- Correct cos rule
- Recognises the half-angle

High Partial Credit:

- cos value calculated but angle not found
- tan value of half-angle calculated

