Question 3

(a) Prove, by induction, that the sum of the first n natural numbers,
$1+2+3+\cdots+n$, is $\frac{n(n+1)}{2}$.
(b) Hence, or otherwise, prove that the sum of the first n even natural numbers, $2+4+6+\cdots+2 n$, is $n^{2}+n$.
(c) Using the results from (a) and (b) above, find an expression for the sum of the first n odd natural numbers in its simplest form.
(a) Prove, by induction, that the sum of the first n natural numbers,
$1+2+3+\cdots+n$, is $\frac{n(n+1)}{2}$.
To Prove: $P(n)=1+2+3+\cdots+n=\frac{n(n+1)}{2}$
$P(1): 1=\frac{1(1+1)}{2}=1$, True
Assume $\mathrm{P}(\mathrm{n})$ is true for $\mathrm{n}=\mathrm{k}$, and prove $\mathrm{P}(\mathrm{n})$ is true for $\mathrm{n}=\mathrm{k}+1$.
$\mathrm{n}=\mathrm{k}: \quad 1+2+3+\cdots+k=\frac{k(k+1)}{2}$
To prove $\mathrm{P}(\mathrm{k}+1)=\frac{(k+1)}{2}(k+2)$
L.H.S. $=1+2+3+\cdots+k+(k+1)=\frac{k(k+1)}{2}+(k+1)=\frac{k(k+1)}{2}+\frac{2(k+1)}{2}$ $=\frac{(k+1)}{2}(k+2)=$ R.H.S
But $\mathrm{P}(1)$ is true, so $\mathrm{P}(2)$ is true etc.
Hence, $P(n)$ is true for all n.
(b) Hence, or otherwise, prove that the sum of the first n even natural numbers, $2+4+6+\cdots+2 n$, is $n^{2}+n$.

$$
\mathrm{a}=2 \text { and } \mathrm{d}=2 \text {. }
$$

$S_{n}=\frac{n}{2}(2 a+(n-1) d)=\frac{n}{2}(4+(n-1) 2)=\frac{n}{2}(2 n+2)=n^{2}+n$

OR

$$
\begin{aligned}
S_{n} & =2+4+6+\ldots \ldots \ldots \ldots .+2 n \\
& =2(1+2+3+\ldots \ldots \ldots . .+n) \\
& =2\left[\frac{n(n+1)}{2}\right] \\
& =n(n+1) \\
& =n^{2}+n
\end{aligned}
$$

(c) Using the results from (a) and (b) above, find an expression for the sum of the first n odd natural numbers in its simplest form.

$$
\begin{aligned}
& 1+2+3+\cdots+2 n=\frac{2 n(2 n+1)}{2}=2 n^{2}+n \\
& \Rightarrow(1+3+5+\cdots n \text { terms })+(2+4+6+\cdots n \text { terms })=2 n^{2}+n \\
& \Rightarrow(1+3+5+\cdots n \text { terms })+\left(n^{2}+n\right)=2 n^{2}+n \\
& \Rightarrow 1+3+5+\cdots n \text { terms }=2 n^{2}+n-\left(n^{2}+n\right)=n^{2}
\end{aligned}
$$

OR

$$
\begin{array}{ll}
S_{A}=1+2+3+\ldots \ldots \ldots \ldots \ldots . .+(2 n-1)+(2 n) & =2 n^{2}+n \\
S_{B}=2+4+6+8+\ldots \ldots \ldots .+2 n & =n^{2}+n \\
S_{A}-S_{B}=1+3+5+\ldots \ldots \ldots .+(2 n-1) & =n^{2}
\end{array}
$$

Question 3

(a) \quad Scale 10D $(0,3,7,8,10)$

Low Partial Credit:

- One correct step in induction
- Statement $P(1)$ true

Mid Partial Credit:

- Uses $(k+1)$ term on LHS
- Some work with $(k+1)$ term

High Partial Credit:

- Correct RHS
- No conclusion
(b) \quad Scale 10D $(0,3,7,8,10)$

Low Partial Credit:

- Recognising 2 as common factor
- $\frac{n}{2}(n+1)$

Mid Partial Credit:

- Correct equation from (a)
- Taking 2 out of series

High Partial Credit:

- Work not completed

OR

(b) Scale 10D (0, 3, 7, 8, 10) [when series tested as an AP]

Low Partial Credit:

- Recognition of $a=2$
- Recognition of $d=2$
- Correct AP formula only

Mid Partial Credit:

- Some substitution into correct formula

High Partial Credit:

- Work not fully simplified
- Answer not in required form
- S_{n} missing
(c) \quad Scale $5 \mathrm{~B}(0,3,5)$

Partial Credit:

- $S_{B}-S_{A}$ indicated
- $S_{B}+S_{A}$
- Use of correct series from (b)

Note: Must use result from (a) and (b) here

