(a) Differentiate the function $2 x^{2}-3 x-6$ with respect to x from first principles.
(b) Let $f(x)=\frac{2 x}{x+2}, x \neq-2, x \in \mathbb{R}$. Find the co-ordinates of the points at which the slope of the tangent to the curve $y=f(x)$ is $\frac{1}{4}$.
(a) Differentiate the function $2 x^{2}-3 x-6$ with respect to x from first principles.

$$
\begin{aligned}
& f(x)=2 x^{2}-3 x-6 \\
& f(x+h)=2(x+h)^{2}-3(x+h)-6=2 x^{2}+4 x h+2 h^{2}-3 x-3 h-6 \\
& f(x+h)-f(x)=4 x h+2 h^{2}-3 h \\
& \operatorname{Limit}_{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right)=\operatorname{Limitt}_{h \rightarrow 0}\left(\frac{4 x h+2 h^{2}-3 h}{h}\right)=4 x-3
\end{aligned}
$$

(b) Let $f(x)=\frac{2 x}{x+2}, x \neq-2, x \in \mathbb{R}$. Find the co-ordinates of the points at which the slope of the tangent to the curve $y=f(x)$ is $\frac{1}{4}$.

$$
\begin{aligned}
& f(x)=\frac{2 x}{x+2} \\
& \begin{array}{ll}
f^{\prime}(x)=\frac{(x+2)(2)-2 x(1)}{(x+2)^{2}}=\frac{4}{(x+2)^{2}} \\
f^{\prime}(x)=\frac{1}{4} \Rightarrow \frac{4}{(x+2)^{2}}=\frac{1}{4}
\end{array} \\
& \quad \Rightarrow 16=(x+2)^{2} \\
& \Rightarrow x+2=4 \text { or } x+2=-4 \\
& \Rightarrow x=2 \text { or } x=-6
\end{aligned} \quad \begin{aligned}
& \text { or } \begin{array}{l}
x^{2}+4 x-12=0 \\
(x-2)(x+6)=0 \\
\Rightarrow x-2=0 \text { or } x+6=-0 \\
\Rightarrow x=2 \text { or } x=-6
\end{array} \\
& \begin{array}{ll}
f(-6)=\frac{-12}{-6+2}=3 \text { and } f(2)=\frac{4}{2+2}=1 & \\
\text { Points }(-6,3) \text { and }(2,1)
\end{array}
\end{aligned}
$$

Question 4

(a) \quad Scale 15D $(0,5,9,12,15)$

Low Partial Credit:

- Introduces $f(x+h)$

Mid Partial Credit:

- $f(x+h)-f(x)$ expressed (need not be simplified)
- RHS only

High Partial Credit:

- Limit $\frac{f(x+h)-f(x)}{h}$ (need not be simplified)
(b) Scale 10D (0, 3, 7, 8, 10)

Low Partial Credit:

- Either $\frac{d u}{d x}$ or $\frac{d v}{d x}$ correct
- No differentiation but writes $f^{\prime}(x)=\frac{1}{4}$

Mid Partial Credit:

- $f^{\prime}(x)$ correct but not simplified

High Partial Credit:

- Correct values of x from students work

