Question 6

The n^{th} term of a sequence is $T_n = \ln a^n$, where a > 0 and a is a constant.

- (a) (i) Show that T_1 , T_2 , and T_3 are in arithmetic sequence.
 - (ii) Prove that the sequence is arithmetic and find the common difference.
- (b) Find the value of *a* for which $T_1 + T_2 + T_3 + \dots + T_{98} + T_{99} + T_{100} = 10100$.
- (c) Verify that, for all values of *a*,

 $\left(T_1 + T_2 + T_3 + \dots + T_{10}\right) + 100 d = \left(T_{11} + T_{12} + T_{13} + \dots + T_{20}\right),$

where d is the common difference of the sequence.

Question 6

The n^{th} term of a sequence is $T_n = \ln a^n$, where a > 0 and a is a constant.

(a) (i) Show that T_1 , T_2 , and T_3 are in arithmetic sequence.

 $T_{1} = \ln a, \quad T_{2} = \ln a^{2} = 2 \ln a, \quad T_{3} = \ln a^{3} = 3 \ln a.$ $T_{2} - T_{1} = 2 \ln a - \ln a = \ln a$ $T_{3} - T_{2} = 3 \ln a - 2 \ln a = \ln a$ $T_{3} - T_{2} = T_{2} - T_{1}.$ Hence, terms are in arithmetic sequence.

(ii) Prove that the sequence is arithmetic and find the common difference.

 $T_n = \ln a^n = n \ln a,$ $T_{n-1} = \ln a^{n-1} = (n-1) \ln a.$ $T_n - T_{n-1} = n \ln a - (n-1) \ln a = \ln a, \text{ (a constant)}.$ Hence, the sequence is arithmetic. Common difference: $T_n - T_{n-1} = \ln a$

- (b) Find the value of *a* for which $T_1 + T_2 + T_3 + \dots + T_{98} + T_{99} + T_{100} = 10100$.

$$T_{1} + T_{2} + T_{3} + \dots + T_{98} + T_{99} + T_{100} = 10\ 100$$

$$\Rightarrow \ln a + 2\ln a + 3\ln a + \dots + 100\ln a = 10\ 100$$

$$\Rightarrow \frac{100}{2} [2\ln a + (100 - 1)\ln a] = 10\ 100$$

$$\Rightarrow 50[101\ln a] = 10\ 100$$

$$\Rightarrow 5050\ln a = 10\ 100$$

$$\Rightarrow \ln a = 2$$

$$\Rightarrow a = e^{2} = 7.389$$

(c)

Verify that, for all values of *a*, $(T_1 + T_2 + T_3 + \dots + T_{10}) + 100d = (T_{11} + T_{12} + T_{13} + \dots + T_{20}),$ where d is the common difference of the sequence.

$$(T_1 + T_2 + T_3 + \dots + T_{10}) + 100d = (T_1 + 10d) + (T_2 + 10d) + (T_3 + 10d) + \dots + (T_{10} + 10d)$$
$$= T_{11} + T_{12} + T_{13} + \dots + T_{20}.$$

UN

$$(T_1 + T_2 + T_3 + \dots + T_{10}) + 100d = (\ln a + 2\ln a + 3\ln a + \dots + 10\ln a) + 100\ln a$$

$$= \frac{10}{2}(2\ln a + (10-1)\ln a) + 100\ln a$$

$$= 5(11\ln a) + 100\ln a$$

$$= 155\ln a$$

$$(T_{11} + T_{12} + T_{13} + \dots + T_{20}) = 11\ln a + 12\ln a + 13\ln a + \dots + 20\ln a$$

$$= \frac{10}{2}(22\ln a + (10-1)\ln a)$$

$$= 5(31\ln a)$$

$$= 155\ln a$$

Hence, L.H.S = R.H.S

[14]

Question 6

NOTE: When particular values are used in ALL sections give Low Partial Credit at most each time

- (a)(i) Scale 10C (0, 5, 7, 10) Low Partial Credit:
 - Only one term correct

High Partial Credit:

- Either $(T_2 T_1)$ or $(T_3 T_2)$ correct
- (a)(ii) Scale 5C (0, 3, 4, 5)

Low Partial Credit:

- Uses two consecutive general terms
- Recognition of common difference and no more

High Partial Credit:

- Shows series arithmetic but does not state common difference
- **(b)** Scale 5C (0, 3, 4, 5) *Low Partial Credit:*
 - Writes three or more terms in form of n and $\ln a$
 - Correct AP formula stated
 - Correct T_n formula

High Partial Credit:

- Correct substitution into formula
- $\ln a = 2$ and does not finish

Note: accept $a = e^2$ for full marks

(c) Scale 5C (0, 3, 4, 5)

Low Partial Credit:

• Recognising $T_{11} = T_1 + 10d$ or similar work

High Partial Credit:

- LHS correct in terms of ln a
- RHS correct in terms of ln a

Note: log is not needed in first solution box