Question 6

The $n^{\text {th }}$ term of a sequence is $T_{n}=\ln a^{n}$, where $a>0$ and a is a constant.
(a) (i) Show that T_{1}, T_{2}, and T_{3} are in arithmetic sequence.
(ii) Prove that the sequence is arithmetic and find the common difference.
(b) Find the value of a for which $T_{1}+T_{2}+T_{3}+\cdots+T_{98}+T_{99}+T_{100}=10100$.
(c) Verify that, for all values of a,

$$
\left(T_{1}+T_{2}+T_{3}+\cdots+T_{10}\right)+100 d=\left(T_{11}+T_{12}+T_{13}+\cdots+T_{20}\right),
$$

where d is the common difference of the sequence.

The $n^{\text {th }}$ term of a sequence is $T_{n}=\ln a^{n}$, where $a>0$ and a is a constant.
(a) (i) Show that T_{1}, T_{2}, and T_{3} are in arithmetic sequence.
$T_{1}=\ln a, \quad T_{2}=\ln a^{2}=2 \ln a, \quad T_{3}=\ln a^{3}=3 \ln a$.
$T_{2}-T_{1}=2 \ln a-\ln a=\ln a$
$T_{3}-T_{2}=3 \ln a-2 \ln a=\ln a$
$T_{3}-T_{2}=T_{2}-T_{1}$. Hence, terms are in arithmetic sequence.
(ii) Prove that the sequence is arithmetic and find the common difference.
$T_{n}=\ln a^{n}=n \ln a$,
$T_{n-1}=\ln a^{n-1}=(n-1) \ln a$.
$T_{n}-T_{n-1}=n \ln a-(n-1) \ln a=\ln a$, (a constant).
Hence, the sequence is arithmetic.
Common difference: $T_{n}-T_{n-1}=\ln a$
(b) Find the value of a for which $T_{1}+T_{2}+T_{3}+\cdots+T_{98}+T_{99}+T_{100}=10100$.
$T_{1}+T_{2}+T_{3}+\cdots+T_{98}+T_{99}+T_{100}=10100$
$\Rightarrow \ln a+2 \ln a+3 \ln a+\cdots+100 \ln a=10100$
$\Rightarrow \frac{100}{2}[2 \ln a+(100-1) \ln a]=10100$
$\Rightarrow 50[101 \ln a]=10100$
$\Rightarrow 5050 \ln a=10100$
$\Rightarrow \ln a=2$
$\Rightarrow a=e^{2}=7.389$
(c) Verify that, for all values of a,

$$
\left(T_{1}+T_{2}+T_{3}+\cdots+T_{10}\right)+100 d=\left(T_{11}+T_{12}+T_{13}+\cdots+T_{20}\right),
$$

where d is the common difference of the sequence.

$$
\begin{aligned}
\left(T_{1}+T_{2}+T_{3}+\cdots+T_{10}\right)+100 d & =\left(T_{1}+10 d\right)+\left(T_{2}+10 d\right)+\left(T_{3}+10 d\right)+\cdots+\left(T_{10}+10 d\right) \\
& =T_{11}+T_{12}+T_{13}+\cdots+T_{20}
\end{aligned}
$$

OR

$$
\begin{aligned}
\left(T_{1}+T_{2}+T_{3}+\cdots+T_{10}\right)+ & 100 d=(\ln a+2 \ln a+3 \ln a+\cdots+10 \ln a)+100 \ln a \\
& =\frac{10}{2}(2 \ln a+(10-1) \ln a)+100 \ln a \\
& =5(11 \ln a)+100 \ln a \\
& =155 \ln a \\
\left(T_{11}+T_{12}+T_{13}+\cdots+T_{20}\right)= & 11 \ln a+12 \ln a+13 \ln a+\cdots+20 \ln a \\
= & \frac{10}{2}(22 \ln a+(10-1) \ln a) \\
= & 5(31 \ln a) \\
= & 155 \ln a
\end{aligned}
$$

Hence, L.H.S = R.H.S

Question 6

NOTE: When particular values are used in ALL sections give Low Partial Credit at most each time
(a)(i) Scale 10C (0, 5, 7, 10)

Low Partial Credit:

- Only one term correct

High Partial Credit:

- Either $\left(T_{2}-T_{1}\right)$ or $\left(T_{3}-T_{2}\right)$ correct
(a)(ii) Scale 5C (0, 3, 4, 5)

Low Partial Credit:

- Uses two consecutive general terms
- Recognition of common difference and no more

High Partial Credit:

- Shows series arithmetic but does not state common difference
(b) \quad Scale $5 \mathrm{C}(0,3,4,5)$

Low Partial Credit:

- Writes three or more terms in form of n and $\ln a$
- Correct AP formula stated
- Correct T_{n} formula

High Partial Credit:

- Correct substitution into formula
- $\ln a=2$ and does not finish

Note: accept $a=e^{2}$ for full marks
(c) \quad Scale $5 \mathrm{C}(0,3,4,5)$

Low Partial Credit:

- Recognising $T_{11}=T_{1}+10 \mathrm{~d}$ or similar work

High Partial Credit:

- LHS correct in terms of $\ln a$
- RHS correct in terms of $\ln a$

Note: \log is not needed in first solution box

