Ciarán is preparing food for his baby and must use cooled boiled water. The equation $y=A e^{k t}$ describes how the boiled water cools. In this equation:

- t is the time, in minutes, from when the water boiled,
- y is the difference between the water temperature and room temperature at time t, measured in degrees Celsius,
- $\quad A$ and k are constants.

The temperature of the water when it boils is $100^{\circ} \mathrm{C}$ and the room temperature is a constant $23^{\circ} \mathrm{C}$.
(a) Write down the value of the temperature difference, y, when the water boils, and find the value of A.
(b) After five minutes, the temperature of the water is $88^{\circ} \mathrm{C}$.

Find the value of k, correct to three significant figures.
(c) Ciarán prepares the food for his baby when the water has cooled to $50^{\circ} \mathrm{C}$. How long does it take, correct to the nearest minute, for the water to cool to this temperature?
(d) 1

(e) (i) On the same diagram, sketch a curve $g(t)=A e^{m t}$, showing the water cooling at a faster rate, where A is the value from part (a), and m is a constant. Label each graph clearly.
(ii) Suggest one possible value for m for the sketch you have drawn and give a reason for your choice.
(f) (i) Find the rates of change of the function $f(t)$ after 1 minute and after 10 minutes. Give your answers correct to two decimal places.
(ii) Show that the rate of change of $f(t)$ will always increase over time.

Ciarán is preparing food for his baby and must use cooled boiled water. The equation $y=A e^{k t}$ describes how the boiled water cools. In this equation:

- t is the time, in minutes, from when the water boiled,
- y is the difference between the water temperature and room temperature at time t, measured in degrees Celsius,
- A and k are constants.

The temperature of the water when it boils is $100^{\circ} \mathrm{C}$ and the room temperature is a constant $23^{\circ} \mathrm{C}$.
(a) Write down the value of the temperature difference, y, when the water boils, and find the value of A.

$$
\begin{aligned}
& y=100-23=77 \text { at } t=0 \\
& y=A e^{k t} \Rightarrow 77=A e^{0} \Rightarrow A=77
\end{aligned}
$$

(b) After five minutes, the temperature of the water is $88^{\circ} \mathrm{C}$.

Find the value of k, correct to three significant figures.

$$
\begin{aligned}
& \text { At } t=5, y=88-23=65 \\
& \begin{aligned}
y=77 e^{k t} \Rightarrow 65=77 e^{5 k} & \Rightarrow 5 k=\ln \frac{65}{77}=-0 \cdot 169418 \\
& \Rightarrow k=-0.03388 \approx-0.0339
\end{aligned}
\end{aligned}
$$

(c) Ciarán prepares the food for his baby when the water has cooled to $50^{\circ} \mathrm{C}$. How long does it take, correct to the nearest minute, for the water to cool to this temperature?

$$
\begin{aligned}
& y=50-23=27 \\
& \begin{aligned}
27=77 e^{-0.0339 t} & \Rightarrow 0 \cdot 0339 t=\ln \frac{77}{27}=1 \cdot 047969 \\
& \Rightarrow t=30 \cdot 9 \approx 31 \text { minutes }
\end{aligned}
\end{aligned}
$$

(d) Using your values for A and k, sketch the curve $f(t)=A e^{k t}$ for $0 \leq t \leq 100, t \in \mathbb{R}$.

$$
\begin{array}{ll}
t=0 \Rightarrow y=77 e^{-0.0339(0)}=77 ; & (0,77) \\
t=10 \Rightarrow y=77 e^{-0.0339(10)}=54 \cdot 9 ; & (10,55) \\
t=20 \Rightarrow y=77 e^{-0.0339(20)}=39 \cdot 1 ; & (20,39) \\
t=30 \Rightarrow y=77 e^{-0.0339(30)}=27 \cdot 9 ; & (30,28) \\
t=40 \Rightarrow y=77 e^{-0.0339(40)}=19 \cdot 8 ; & (40,20) \\
t=50 \Rightarrow y=77 e^{-0.0339(50)}=14 \cdot 1 ; & (50,14) \\
t=60 \Rightarrow y=77 e^{-0.0339(60)}=10 \cdot 1 ; & (60,10) \\
t=70 \Rightarrow y=77 e^{-0.0339(70)}=7 \cdot 2 ; & (70,7) \\
t=80 \Rightarrow y=77 e^{-0.0339(80)}=5 \cdot 1 ; & (80,5) \\
t=90 \Rightarrow y=77 e^{-0.0339(90)}=3 \cdot 6 ; & (90,4) \\
t=100 \Rightarrow y=77 e^{-0.0339(100)}=2 \cdot 6 ; & (100,3)
\end{array}
$$

(e) (i) On the same diagram, sketch a curve $g(t)=A e^{m t}$, showing the water cooling at a faster rate, where A is the value from part (a), and m is a constant. Label each graph clearly.
(ii) Suggest one possible value for m for the sketch you have drawn and give a reason for your choice.

Test $m=-0 \cdot 02, m=k=-0.0339$ and $m=-0 \cdot 05$

$$
\begin{aligned}
& m=-0 \cdot 02, t=10 \Rightarrow y=77 e^{-0.02(10)}=63 \cdot 0 \\
& m=k=-0 \cdot 0339 \Rightarrow y=54 \cdot 9 \text { (from table) } \\
& m=-0 \cdot 05, t=10 \Rightarrow y=77 e^{-0.05(10)}=46 \cdot 7
\end{aligned}
$$

Any value of $m<k$ for faster decay.
(f) (i) Find the rates of change of the function $f(t)$ after 1 minute and after 10 minutes. Give your answers correct to two decimal places.

$$
\begin{aligned}
& y=77 e^{-0.0339 t} \Rightarrow \frac{d y}{d t}=-2 \cdot 6103 e^{-0.0339 t} \\
& t=1, \frac{d y}{d t}=-2 \cdot 6103 e^{-0.0339}=-2 \cdot 52 \\
& t=10, \frac{d y}{d t}=-2 \cdot 6103 e^{-0.339}=-1.86
\end{aligned}
$$

(ii) Show that the rate of change of $f(t)$ will always increase over time.

$$
\frac{d^{2} y}{d t^{2}}=0 \cdot 088 e^{-0.0339 t}>0 \Rightarrow \frac{d y}{d t} \text { is increasing }
$$

Question 9

(a) \quad Scale 10C (0, 5, 7, 10)

Low Partial Credit:

- Value of y only
- Some use of 100 and/or 23

High Partial Credit:

- Correct substitution into equation
- A calculated from incorrect y
(b) Scale 10C (0, 5, 7, 10)

Low Partial Credit:

- Value of y only
- Some use of 88 and/or 23

High Partial Credit:

- Correct expression for k
- k calculated from incorrect y
(c) \quad Scale 10C (0, 5, 7, 10)

Low Partial Credit:

- Value of y only

High Partial Credit:

- Correct expression for t
- t calculated from incorrect y
(d) \quad Scale 15C (0, 7, 10, 15)

Low Partial Credit:

- Any one point identified
- Graph of correct shape, even if no point correct or no point calculated
- Accept candidates value of k

Note: all graphs may not be the same, due to different values of A and k

High Partial Credit:

- Three points correctly plotted, but graph incomplete or no graph

Note: do not accept straight line graph
(e)(i) and (e)(ii)

Scale 5C (0, 3, 4, 5)
Low Partial Credit:

- Any attempt at similar graph
- No graph but correct deduction

High Partial Credit:

- Correct graph plotted but graph incomplete, or no graph
(f)(i) \quad Scale $5 \mathrm{C}(0,3,4,5)$

Low Partial Credit:

- Indication of differentiation i.e. $\frac{d y}{d t}, \frac{d x}{d t}$ or $f^{\prime}(t)$ (i.e. differentiation with respect to t)
- Treats e as x in differentiation

High Partial Credit:

- One value of $\frac{d y}{d t}$ indicated
(f)(ii) \quad Scale $5 \mathrm{C}(0,3,4,5)$

Low Partial Credit:

- Attempt at $2^{\text {nd }}$ derivative
- Attempt at deduction from numerical values

High Partial Credit:

- Shows $2^{\text {nd }}$ derivative positive

