The $n^{\text {th }}$ term of a sequence is $T_{n}=\ln a^{n}$, where $a>0$ and a is a constant.
(a) (i) Show that T_{1}, T_{2}, and T_{3} are in arithmetic sequence.

(ii) Prove that the sequence is arithmetic and find the common difference.

(b) Find the value of a for which $T_{1}+T_{2}+T_{3}+\cdots+T_{98}+T_{99}+T_{100}=10100$.
\qquad
(c) Verify that, for all values of a,

$$
\left(T_{1}+T_{2}+T_{3}+\cdots+T_{10}\right)+100 d=\left(T_{11}+T_{12}+T_{13}+\cdots+T_{20}\right),
$$

where d is the common difference of the sequence.

page	running

