Question 7

(a) Three natural numbers a, b and c, such that $a^{2}+b^{2}=c^{2}$, are called a Pythagorean triple.
(i) Let $a=2 n+1, b=2 n^{2}+2 n$ and $c=2 n^{2}+2 n+1$.

Pick one natural number n and verify that the corresponding values of a, b and c form a Pythagorean triple.

(ii) Prove that $a=2 n+1, b=2 n^{2}+2 n$ and $c=2 n^{2}+2 n+1$, where $n \in \mathbb{N}$, will always form a Pythagorean triple.

(b) $A D E C$ is a rectangle with $|A C|=7 \mathrm{~m}$ and $|A D|=2 \mathrm{~m}$, as shown.
B is a point on $[A C]$ such that $|A B|=5 \mathrm{~m}$.
P is a point on $[D E]$ such that $|D P|=x \mathrm{~m}$.
(i) Let $f(x)=|P A|^{2}+|P B|^{2}+|P C|^{2}$.

Show that $f(x)=3 x^{2}-24 x+86$, for $0 \leq x \leq 7, x \in \mathbb{R}$.

(ii) The function $f(x)$ has a minimum value at $x=k$.

Find the value of k and the minimum value of $f(x)$.

