Answer either 6A or 6B.

## Question 6A

(a) Prove that, if two triangles $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ are similar, then their sides are proportional, in order:

$$
\frac{|A B|}{\left|A^{\prime} B^{\prime}\right|}=\frac{|B C|}{\left|B^{\prime} C^{\prime}\right|}=\frac{|C A|}{\left|C^{\prime} A^{\prime}\right|}
$$

(b) Given the line segment [ $B C$ ], construct, without using a protractor or set square, a point $A$ such that $|\angle A B C|=60^{\circ}$. Show your construction lines.


## Question 6B

$[A B]$ and $[C D]$ are chords of a circle that intersect externally at $E$, as shown.

(a) Name two similar triangles in the diagram above and give reasons for your answer.
(b) Prove that $|E A| .|E B|=|E C| .|E D|$.
(c) Given that $|E B|=6 \cdot 25,|E D|=5.94$ and $|C B|=10$, find $|A D|$.

Answer either 6A or 6B.

## Question 6A

(a) Prove that, if two triangles $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ are similar, then their sides are proportional, in order:

$$
\frac{|A B|}{\left|A^{\prime} B^{\prime}\right|}=\frac{|B C|}{\left|B^{\prime} C^{\prime}\right|}=\frac{|C A|}{\left|C^{\prime} A^{\prime}\right|} .
$$



Given: The similar triangles $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$.
To Prove: $\frac{|A B|}{\left|A^{\prime} B^{\prime}\right|}=\frac{|B C|}{\left|B^{\prime} C^{\prime}\right|}=\frac{|C A|}{\left|C^{\prime} A^{\prime}\right|}$.
Construction: Mark $B^{\prime \prime}$ on $|A B|$ such that $\left|A B^{\prime \prime}\right|=\left|A^{\prime} B^{\prime}\right|$.
Mark $C^{\prime \prime}$ on $|A C|$ such that $\left|A C^{\prime \prime}\right|=\left|A^{\prime} C^{\prime}\right|$.
Join $B^{\prime \prime} C^{\prime \prime}$
Proof: $\triangle A B^{\prime \prime} C^{\prime \prime}$ is congruent to $\Delta A^{\prime} B^{\prime} C^{\prime}$. . SAS
$\Rightarrow\left|\angle A B^{\prime \prime} C^{\prime \prime}\right|=|\angle A B C|$
$\Rightarrow B^{\prime \prime} C^{\prime \prime} \| B C \ldots$ corresponding angles
Hence, $\frac{|A B|}{\left|A B^{\prime \prime}\right|}=\frac{|A C|}{\left|A C^{\prime \prime}\right|} \ldots$ Theorem
$\Rightarrow \frac{|A B|}{\left|A^{\prime} B^{\prime}\right|}=\frac{|A C|}{\left|A^{\prime} C^{\prime}\right| .}$
Similarly, $\frac{|B C|}{\left|B^{\prime} C^{\prime}\right|}=\frac{|A B|}{\left|A^{\prime} B^{\prime}\right|}$
Hence, $\frac{|A B|}{\left|A^{\prime} B^{\prime}\right|}=\frac{|B C|}{\left|B^{\prime} C^{\prime}\right|}=\frac{|C A|}{\left|C^{\prime} A^{\prime}\right|}$.
(b) Given the line segment [ $B C$ ], construct, without using a protractor or set square, a point $A$ such that $|\angle A B C|=60^{\circ}$. Show your construction lines.


## OR

## Question 6B

$[A B]$ and $[C D]$ are chords of a circle that intersect externally at $E$, as shown.

(a) Name two similar triangles in the diagram above and give reasons for your answer.
$\triangle A D E$ and $\triangle B C E$ are similar
$|\angle E A D|=|\angle B C E|, \quad$ on $\operatorname{arc} B D$
$|\angle D E A|=|\angle C E B|$, same angle
$|\angle A D E|=|\angle E B C|$, third angle
Also (i) $\triangle A X B$ and $\triangle D X C$ are similar, where $A D \cap C B=\{X\}$
and (ii) $\triangle A X C$ and $\triangle B X D$ are similar, where $A D \cap C B=\{X\}$
(b) Prove that $|E A| .|E B|=|E C| .|E D|$.
$\triangle A D E$ and $\triangle B C E$ are similar.
Hence, $\frac{|E A|}{|E C|}=\frac{|E D|}{|E B|}$
$\Rightarrow|E A| \cdot|E B|=|E C| \cdot|E D|$
(c) Given that $|E B|=6 \cdot 25,|E D|=5.94$ and $|C B|=10$, find $|A D|$.

$$
\begin{aligned}
\frac{|E D|}{|E B|}=\frac{|A D|}{|C B|} & \Rightarrow \frac{5.94}{6 \cdot 25}=\frac{|A D|}{10} \\
& \Rightarrow|A D|=\frac{5 \cdot 94 \times 10}{6.25}=9.504
\end{aligned}
$$

(a) Diagram / Given : Scale 5B $(0,2,5)$

Partial Credit:

- Effort at Diagram or Given

Construction: Scale 5B (0, 2, 5)
Partial Credit:

- Construction attempted
- Construction not explained or explanation incomplete

Proof: Scale 10C (0, 3, 7, 10)
Low Partial Credit:

- More than one critical step omitted but still some substantial work of merit


## High Partial Credit:

- Proof completed with one critical step omitted
(b) Scale 5B (0, 2, 5)

Partial Credit:

- Arc AC and/or arc AB
- Effort at drawing arc from B


## Question 6B

(25 marks)
(a) Scale 10C (0, 3, 7, 10)

Low Partial Credit:

- Triangles named

High Partial Credit:

- Two pairs of angles in relevant triangles identified but justification incomplete
- Two pairs of angles identified with justification but triangles not named
(b) Scale 10C (0, 3, 7, 10)

Low Partial Credit:

- Relevant triangles identified
- Partly correct ratio


## High Partial Credit:

- Correct ratio established but fails to complete
(c) $\operatorname{Scale} 5 \mathrm{C}(0,2,3,5)$

Low Partial Credit:

- Effort at establishing ratio

High Partial Credit:

- Ratio established and values entered

