(a) The diagram shows a circular clock face, with the hands not shown. The square part of the clock face is glass so that the mechanism is visible. Two circular cogs, h and k, which touch externally are shown.

The point C is the centre of the clock face. The point D is the centre of the larger cog, h, and the point E is the centre of the smaller cog, k.
(i) In suitable co-ordinates, the equation of the circle h is

$$
x^{2}+y^{2}+4 x+6 y-19=0
$$

Find the radius of h, and the co-ordinates of its centre, D.

(ii) The point E has co-ordinates $(3,2)$. Find the radius of the circle k.
(iii) Show that the distance from $C(-2,2)$ to the line $D E$ is half the length of $[D E]$.
(iv) The translation which maps the midpoint of $[D E]$ to the point C maps the circle k to the circle j. Find the equation of the circle j.
(v) The glass square is of side length l. Find the smallest whole number l such that the two cogs, h and k, are fully visible through the glass.

(b) The triangle $A B C$ is right-angled at C.

The circle s has diameter [$A C$] and the circle t has diameter $[C B]$.
(i) Draw the circle u which has diameter $[A B]$.
(ii) Prove that in any right-angles triangle $A B C$, areas of the circles s and t.
(iii) The diagram shows the
 right-angled triangle $A B C$ and arcs of the circles s, t and u.

Each of the shaded areas in the diagram is called a lune, a crescent-shaped area bounded by arcs of the circles.

Prove that the sum of the areas of the two shaded lunes is equal to the area of the triangle $A B C$.

Question 9

(a) The diagram shows a circular clock face, with the hands not shown. The square part of the clock face is glass so that the mechanism is visible. Two circular cogs, h and k, which touch externally are shown.

The point C is the centre of the clock face. The point D is the centre of the larger cog, h, and the point E is the centre of the smaller cog, k.
(i) In suitable co-ordinates the equation of the circle h is

$$
x^{2}+y^{2}+4 x+6 y-19=0 .
$$

Find the radius of h and the co-ordinates of its centre, D.

$r_{1}=\sqrt{4+9+19}=\sqrt{32}=4 \sqrt{2}$
$D(-2,-3)$
(ii) The point E has co-ordinates $(3,2)$. Find the radius of the circle k.

$$
\begin{aligned}
& |D E|=\sqrt{(3+2)^{2}+(2+3)^{2}}=\sqrt{50}=5 \sqrt{2} \\
& r_{1}+r_{2}=|D E| \Rightarrow 4 \sqrt{2}+r_{2}=5 \sqrt{2} \Rightarrow r_{2}=\sqrt{2}
\end{aligned}
$$

(iii) Show that the distance from $C(-2,2)$ to the line $D E$ is half the length of [DE].

Slope $D E=\frac{2+3}{3+2}=1$
Equation $D E: y+3=1(x+2) \Rightarrow x-y-1=0$
Distance from C to $D E: \quad p=\left|\frac{-2-2-1}{\sqrt{1+1}}\right|=\left|\frac{5}{\sqrt{2}}\right|=\frac{5 \sqrt{2}}{2}=\frac{1}{2}|D E|$
(iv) The translation which maps the midpoint of [DE] to the point C maps the circle k to the circle j. Find the equation of the circle j.

Midpoint $[D E]=\left(\frac{-2+3}{2}, \frac{-3+2}{2}\right)=\left(\frac{1}{2},-\frac{1}{2}\right)$
$\left(\frac{1}{2},-\frac{1}{2}\right) \rightarrow(-2,2)$ maps $(3,2) \rightarrow\left(\frac{1}{2}, \frac{9}{2}\right)$
$j:\left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{9}{2}\right)^{2}=(\sqrt{2})^{2}=2$
$4 x^{2}+4 y^{2}-4 x-36 y+74=0$
(v) The glass square is of side length l. Find the smallest whole number l such that the two cogs, h and k, are fully visible through the glass.

$D(-2,-3), \quad F(3,-3)$
$|D F|=5$
Length: $r_{1}+|D F|+r_{2}=4 \sqrt{2}+5+\sqrt{2}=5 \sqrt{2}+5=12 \cdot 07$
$l=13$
(b) The triangle $A B C$ is right-angled at C.

The circle s has diameter $[A C]$ and the circle t has diameter [CB].
(i) Draw the circle u which has diameter $[A B]$.

(ii) Prove that in any right-angles triangle $A B C$, the area of the circle u equals the sum of the areas of the circles s and t.

Triangle $A B C$ is right-angled:

$$
\begin{aligned}
& |A B|^{2}=|A C|^{2}+|C B|^{2} \\
& \Rightarrow \frac{\pi}{4}\left(|A B|^{2}\right)=\frac{\pi}{4}\left(|A C|^{2}+|C B|^{2}\right) \\
& \Rightarrow \pi\left(\frac{|A B|}{2}\right)^{2}=\pi\left(\frac{|A C|}{2}\right)^{2}+\pi\left(\frac{|C B|}{2}\right)^{2}
\end{aligned}
$$

Thus, area of $u=$ area of $s+$ area of t.
(iii) The diagram shows the right-angled triangle $A B C$ and arcs of the circles s, t and u.

Each of the shaded areas in the diagram is called a lune, a crescent-shaped area bounded by arcs of the circles.

Prove that the sum of the areas of the two shaded lunes is equal to the area of the triangle $A B C$.

$$
\begin{aligned}
& \frac{1}{2} \text { area of } u=\frac{1}{2}(\text { area of } s+\text { area of } t) \\
& \Rightarrow \mathrm{A}_{3}+\mathrm{A}_{4}+\mathrm{A}_{5}=\left(\mathrm{A}_{1}+\mathrm{A}_{4}\right)+\left(\mathrm{A}_{2}+\mathrm{A}_{5}\right) \\
& \Rightarrow \mathrm{A}_{3}=\mathrm{A}_{1}+\mathrm{A}_{2}
\end{aligned}
$$

(a)(i) Scale 15C ($0,5,10,15$)

Low Partial Credit:

- Effort at relating one or more coefficients of given equation to general equation of circle
- Effort at completing square(s)

High Partial Credit:

- Either radius or centre correct
- Substantive work with one critical error
(ii) Scale 10C (0, 3, 7, 10)

Low Partial Credit:

- Effort at finding $|D E|$
- Length of line segment formula
- Indicates some understanding of $r_{1}+r_{2}=|D E|$

High Partial Credit:

- $r_{1}+r_{2}=|D E|$ or equivalent with known values substituted
(iii) Scale 10C (0, 3, 7, 10)

Low Partial Credit:

- Slope DE
- Equation DE and stops
- Formula for slope and /or equation of DE
- Perpendicular distance formula

High Partial Credit:

- Values inserted into perpendicular distance formula
- No conclusion stated or implied
(iv) Scale 5C (0, 2, 3, 5)

Low Partial Credit:

- Effort to find midpoint of DE
- Centre found from scaled drawing

High Partial Credit:

- Centre of j found and inserted into equation of circle i.e radius omitted
(v) Scale 5C (0, 2, 3, 5)

Low Partial Credit:

- Effort to find F
- Indication length $r_{1}+r_{2}+|D F|$ (or equivalent)

High Partial Credit:

- F found
(b)(i) Scale 5B (0, 2, 5)

Partial Credit:

- Circle containing A and B but lacking in accuracy
(ii) Scale 5C (0, 2, 3, 5)

Low Partial Credit:

- Pythagoras stated or implied
- Effort at finding area of s or t or u

High Partial Credit

- Correct expression for area of any circle
e.g area $u=\frac{\pi}{4}\left(|A B|^{2}\right)$ or $\pi\left(\frac{|A B|}{2}\right)^{2}$
(iii) Scale 5C (0, 2, 3, 5)

Low Partial Credit:

- Statement using result from (b)(ii)
- Recognising half the area of s or half the area t can be expressed in terms of two component areas
- Recognising half area of u can be expressed in terms of three components

High Partial Credit

- Correct expression for two of the relevant areas

