Question 2

Solve the equation $x^{3}-3 x^{2}-9 x+11=0$.
Write any irrational solution in the form $a+b \sqrt{c}$, where $a, b, c \in \mathbb{Z}$.

Question 2

Solve the equation $x^{3}-3 x^{2}-9 x+11=0$.
Write any irrational solution in the form $a+b \sqrt{c}$, where $a, b, c \in \mathbb{Z}$.

$$
\begin{aligned}
& f(x)=x^{3}-3 x^{2}-9 x+11 \\
& f(1)=1^{3}-3(1)^{2}-9+11=0 \\
& \Rightarrow x=1 \text { is a solution. }
\end{aligned}
$$

$$
(x-1) \text { is a factor }
$$

$$
x^{3}-x^{2}
$$

$$
-2 x^{2}-9 x+11
$$

$$
-2 x^{2}+2 x \quad \text { or } \quad \Rightarrow A-1=-3
$$

$$
-11 x+11
$$

$$
-11 x+11
$$

$$
\begin{aligned}
& (x-1)\left(x^{2}+A x-11\right)=x^{3}-3 x^{2}-9 x+11 \\
& \Rightarrow x^{3}+A x^{2}-x-x^{2}-A x+1=x^{3}-3 x^{2}-9 x+11 \\
& \Rightarrow A-1=-3 \\
& \Rightarrow A=-2
\end{aligned}
$$

or

	x^{2}		$-2 x$
	-11		
	x^{3}	$-2 x^{2}$	$-11 x$
-1	$-x^{2}$	$2 x$	11

Hence, other factor is $x^{2}-2 x-11$

$$
x=\frac{2 \pm \sqrt{(-2)^{2}-4(1)(-11)}}{2(1)}=\frac{2 \pm \sqrt{48}}{2}=\frac{2 \pm 4 \sqrt{3}}{2}=1 \pm 2 \sqrt{3}
$$

Solutions: $\{1,1+2 \sqrt{3}, 1-2 \sqrt{3}\}$

Scale 25E (0, 5, 10, 15, 20, 25)
Low Partial Credit:

- Effort at finding root, i.e. $f(1), f(-1)$, etc.

Low

Mid Partial Credit:

- Finds one root correctly
- $x^{\wedge} 2$ after division by incorrect factor
- Correct answers in decimal form from calculator with or without work

High Mid Partial Credit:

- Tries division and gets $x^{\wedge} 2$ at very minimum

Note: If there is a remainder after division can only get maximum of 15 marks.

High Partial Credit:

- Having got a quadratic equation with no remainder, fills in quadratic formula • $1 \pm \sqrt{ } 12$

Note: If there is a remainder after division can only get maximum of 15 marks.

