An oil-spill occurs off-shore in an area of calm water with no currents. The oil is spilling at a rate of $4 \times 10^{6} \mathrm{~cm}^{3}$ per minute. The oil floats on top of the water.
(a) (i) Complete the table below to show the total volume of oil on the water after each of the first 6 minutes of the oil-spill.

Time (minutes)	1	2	3	4	5	6
Volume $\left(10^{6} \mathrm{~cm}^{3}\right)$		8				

(ii) Draw a graph to show the total volume of oil on the water over the first 6 minutes.

(iii) Write an equation for $V(t)$, the volume of oil on the water, in cm^{3}, after t minutes.
(b) The spilled oil forms a circular oil slick 1 millimetre thick.
(i) Write an equation for the volume of oil in the slick, in cm^{3}, when the radius is $r \mathrm{~cm}$.
(ii) Find the rate, in cm per minute, at which the radius of the oil slick is increasing when the radius is 50 m .
(c) Show that the area of water covered by the oil slick is increasing at a constant rate of $4 \times 10^{7} \mathrm{~cm}^{2}$ per minute.
(d) The nearest land is 1 km from the point at which the oil-spill began. Find how long it will take for the oil slick to reach land. Give your answer correct to the nearest hour.

Question 8

An oil-spill occurs off-shore in an area of calm water with no currents. The oil is spilling at a rate of $4 \times 10^{6} \mathrm{~cm}^{3}$ per minute. The oil floats on top of the water.
(a) (i) Complete the table below to show the total volume of oil on the water after each of the first 6 minutes of the oil-spill.
(a)(i) Scale 5B $(0,2,5)$ Partial Credit: • One correct box

Time (minutes)	1	2	3	4	5	6
Volume $\left(10^{6} \mathrm{~cm}^{3}\right)$	4	8	12	16	20	24

(ii) Draw a graph to show the total volume of oil on the water over the first 6 minutes.

(iii) Write an equation for $V(t)$, the volume of oil on the water, in cm^{3}, after t minutes.

Line, slope 4×10^{6}, passing through $(0,0)$.
$V(t)=\left(4 \times 10^{6}\right) t$
(a)(iii) Scale 5B (0, 2, 5)

Partial Credit:

- Incomplete equation for volume • any function of t
(b) The spilled oil forms a circular oil slick 1 millimetre thick.
(i) Write an equation for the volume of oil in the slick, in cm^{3}, when the radius is $r \mathrm{~cm}$.

$$
\begin{array}{rlrl}
V & =\pi r^{2} h & & \text { (b)(i) Scale 5B }(0,2,5) \\
& =\pi r^{2}(0 \cdot 1) & & \text { Partial Credit: } \\
& =0 \cdot 1 \pi r^{2} \mathrm{~cm}^{3} & & \bullet \text { Correct volume formula } \\
& & \bullet \text { Converting mm to cm }
\end{array}
$$

(ii) Find the rate, in cm per minute, at which the radius of the oil slick is increasing when the radius is 50 m .

$$
\begin{aligned}
& \frac{d V}{d t}=4 \times 10^{6} \mathrm{~cm}^{3} \text { per minute } \\
& \text { (b)(ii) Scale 10D (0, 2, 5, 8, 10) } \\
& V=\pi r^{2} h \text { where } h=0.1 \mathrm{~cm} \\
& \frac{d V}{d r}=2 \pi r h \\
& \frac{d V}{d r}=0 \cdot 2 \pi r \\
& \frac{d r}{d t}=\frac{d r}{d V} \frac{d V}{d t}=\frac{1}{0 \cdot 2 \pi r} \times 4 \times 10^{6} \\
& =\frac{4 \times 10^{6}}{0 \cdot 2 \pi(5000)}=1273 \cdot 3 \mathrm{~cm} \text { per minute } \\
& \text { Low Partial Credit: } \\
& \text { - Mentions a relevant rate of change. } \\
& \text { Mid Partial Credit: } \\
& \text { - Gets dr/dt from dV/dr and dV/dt } \\
& \text { - Writing down chain rule. } \\
& \text { High Partial Credit: } \\
& \text { - Substitution of values }
\end{aligned}
$$

(c) Show that the area of water covered by the oil slick is increasing at a constant rate of $4 \times 10^{7} \mathrm{~cm}^{2}$ per minute.

$$
\begin{aligned}
& A=\pi r^{2} \Rightarrow \frac{d A}{d r}=2 \pi r \\
& \frac{d A}{d t}=\frac{d A}{d r} \frac{d r}{d t}=2 \pi r \frac{4 \times 10^{6}}{0 \cdot 2 \pi r}=4 \times 10^{7} \mathrm{~cm}^{2} \text { per minute }
\end{aligned}
$$

(c) Scale 10C (0, 4, 8, 10) -

NOTE: two solutions 1st solution Low Partial Credit:

- Mentions relevant rate of change.
High Partial Credit: states chain rule

$$
\begin{aligned}
& (0 \cdot 1) \pi r^{2}=\left(4 \times 10^{6}\right) t \\
& \Rightarrow A=\pi r^{2}=\left(4 \times 10^{7}\right) t \\
& \frac{d A}{d t}=4 \times 10^{7}
\end{aligned}
$$

(c) Scale 10C (0, 4, 8, 10) - 2nd solution Low Partial Credit:

- Effort to establish value of A

High Partial Credit:

- A in terms of t

Note: Must use calculus to get any credit.
(d) The nearest land is 1 km from the point at which the oil-spill began. Find how long it will take for the oil slick to reach land. Give your answer correct to the nearest hour.

$$
\begin{aligned}
A=\pi r^{2}=\pi\left(10^{5}\right)^{2}=\pi 10^{10} \mathrm{~cm}^{2} & \text { (d) Scale 10c }(0,4,8,10) \\
t=\frac{\pi 10^{10}}{4 \times 10^{7}}=\frac{\pi 10^{3}}{4}=785 \cdot 398 \text { minutes } & \text { Low Partial Credit: } \\
& \text { •r in centimetres } \\
& \bullet \text { •Effort at expression of area } \\
& \text { High Partial Credit: } \\
& \text { •Correct expression for time }
\end{aligned}
$$

