Question 7

A flat machine part consists of two circular ends attached to a plate, as shown (diagram not to scale). The sides of the plate, *HK* and *PQ*, are tangential to each circle.

The larger circle has centre A and radius 4r cm.

The smaller circle has centre B and radius r cm.

The length of [*HK*] is 8r cm and $|AB| = 20\sqrt{73}$ cm.

- (a) Find r, the radius of the smaller circle. (Hint: Draw $BT \parallel KH$, $T \in AH$.)
- (b) Find the area of the quadrilateral *ABKH*.
- (c) (i) Find $|\angle HAP|$, in degrees, correct to one decimal place.
 - (ii) Find the area of the machine part, correct to the nearest cm^2 .

Section B

150 marks

Answer all three questions from this section.

Question 7

(40 marks)

A flat machine part consists of two circular ends attached to a plate, as shown (diagram not to scale). The sides of the plate, *HK* and *PQ*, are tangential to each circle.

The larger circle has centre A and radius 4r cm.

The smaller circle has centre B and radius r cm.

The length of [*HK*] is 8r cm and $|AB| = 20\sqrt{73}$ cm.

(a) Find r, the radius of the smaller circle. (Hint: Draw $BT \parallel KH$, $T \in AH$.)

(b) Find the area of the quadrilateral *ABKH*.

$$|ABKH| = |BKHT| + |\Delta ABT|$$

= 20×160 + $\frac{1}{2}$ (60)(160)
= 8000 cm²

(c) (i) Find $|\angle HAP|$, in degrees, correct to one decimal place.

$$\tan |\angle HAB| = \frac{160}{60} \implies |\angle HAB| = 69 \cdot 44^{\circ}$$
$$\implies |\angle HAP| = 138 \cdot 9^{\circ}$$

(ii) Find the area of the machine part, correct to the nearest cm^2 .

Area large sector
$$HAP + 2$$
 area $HABK +$ area sector KBQ
= $\pi (80)^2 \left(\frac{221 \cdot 1}{360}\right) + 2 \times 8000 + \pi (20)^2 \left(\frac{138 \cdot 9}{360}\right)$
= $12348 \cdot 55 + 16000 + 484 \cdot 85$
= $28833 \cdot 4$
= 28833

Section B

Question 7

(40 marks)

(a) Scale 15C (0, 5, 12, 15)

Low Partial Credit:

- *BT* drawn correctly
- Pythagoras formula with some correct substitution
- Recognising $|\angle ATB| = 90^{\circ}$

High Partial Credit:

Pythagoras formula fully substituted

(b) Scale 15C (0, 5, 12, 15)

Low Partial Credit:

- Indicates two areas
- Effort at area of rectangle only
- Effort at area of triangle only

High Partial Credit:

- Area of triangle correct
- Area of rectangle correct

(c)(i) Scale 5C (0, 2, 4, 5)

Low Partial Credit:

• $\tan \angle HAB = \frac{160}{60}$ or equivalent in sin or cos

High Partial Credit:

• $\angle HAB$ in degrees.

(c)(ii) Scale 5D (0, 2, 3, 4, 5)

Low Partial Credit:

• Effort at area of one region

Mid Partial Credit:

Area of one sector with correct substitution

High Partial Credit:

• Area of two sectors with substitution correct in both.