(a) Joan is playing golf. She is 150 m from the centre of a circular green of diameter 30 m . The diagram shows the range of directions in which Joan can hit the ball so that it could land on the green.
Find $\alpha$, the measure of the angle of this range of directions. Give your answer, in degrees, correct to one decimal place.

(b) At the next hole, Joan, at $T$, attempts to hit the ball in the direction of the hole $H$. Her shot is off target and the ball lands at $A$, a distance of 190 metres from $T$, where $|\angle A T H|=18^{\circ}$.
$|T H|$ is 385 metres. Find $|A H|$, the distance from the ball to the hole, correct to the nearest metre.

(c) At another hole, where the ground is not level, Joan hits the ball from $K$, as shown. The ball lands at $B$. The height of the ball, in metres, above the horizontal line $O B$ is given by

$$
h=-6 t^{2}+22 t+8
$$

where $t$ is the time in seconds after the ball is struck and $h$ is the height of the ball.

(i) Find the height of $K$ above $O B$.
(ii) The horizontal speed of the ball over the straight distance $[O B]$ is a constant $38 \mathrm{~m} \mathrm{~s}^{-1}$. Find the angle of elevation of $K$ from $B$, correct to the nearest degree.
(d) At a later hole, Joan's first shot lands at the point $G$, on ground that is sloping downwards, as shown. A vertical tree, $[C E], 25$ metres high, stands between $G$ and the hole. The distance, $|G C|$, from the ball to the bottom of the tree is also 25 metres.

The angle of elevation at $G$ to the top of the tree, E , is $\theta$, where $\theta=\tan ^{-1}(1 / 2)$.

The height of the top of the tree above the horizontal, $G D$, is $h$ metres and $|G D|=d$ metres.
(i) Write d and $|C D|$ in terms of $h$.
(ii) Hence, or otherwise, find $h$.


## Question 9

(a) Joan is playing golf. She is 150 m from the centre of a circular green of diameter 30 m . The diagram shows the range of directions in which Joan can hit the ball so that it could land on the green. Find $\alpha$, the measure of the angle of this range of directions. Give your answer, in degrees, correct to one decimal place.

$$
\begin{gathered}
\sin \frac{1}{2} \alpha=\frac{15}{150}=0.1 \\
\Rightarrow \frac{1}{2} \alpha=5.739^{\circ} \\
\Rightarrow \alpha=11.478^{\circ} \\
\quad \alpha=11.5^{\circ}
\end{gathered}
$$


(b) At the next hole, Joan, at $T$, attempts to hit the ball in the direction of the hole $H$. Her shot is off target and the ball lands at $A$, a distance of 190 metres from $T$, where $|\angle A T H|=18^{\circ} .|T H|$ is 385 metres. Find $|A H|$, the distance from the ball to the hole, correct to the nearest metre.


$$
\begin{aligned}
|A H|^{2} & =190^{2}+385^{2}-2(190)(385) \cos 18^{\circ} \\
& =36100+148225-139139 \cdot 5683 \\
& =45185 \cdot 4317 \\
|A H| & =212 \cdot 57=213
\end{aligned}
$$



Draw $A X$ perpendicular to $T H$
triangle $A T X: \quad \sin 18^{\circ}=\frac{|A X|}{190} \Rightarrow|A X|=58.71$
$\cos 18^{\circ}=\frac{|T X|}{190} \Rightarrow|T X|=180 \cdot 7$
$\Rightarrow|X H|=204 \cdot 3$
$\Rightarrow|A H|^{2}=(58 \cdot 71)^{2}+(204 \cdot 3)^{2}$
$\Rightarrow|A H|=212 \cdot 566=213$
(c) At another hole, where the ground is not level, Joan hits the ball from $K$, as shown. The ball lands at $B$. The height of the ball, in metres, above the horizontal line $O B$ is given by

$$
h=-6 t^{2}+22 t+8
$$

where $t$ is the time in seconds after the ball is struck and $h$ is the height of the ball.

(i) Find the height of $K$ above $O B$.

$$
\begin{aligned}
& h=-6 t^{2}+22 t+8 \\
& t=0 \Rightarrow h=8 \mathrm{~m}
\end{aligned}
$$

(ii) The horizontal speed of the ball over the straight distance $[O B]$ is a constant $38 \mathrm{~m} \mathrm{~s}^{-1}$. Find the angle of elevation of $K$ from $B$, correct to the nearest degree.

$$
\begin{aligned}
h=0 & \Rightarrow-6 t^{2}+22 t+8=0 \\
& \Rightarrow(t-4)(-6 t-2)=0 \\
& \Rightarrow t=4, \quad t=-\frac{1}{3} \\
t=4 & \Rightarrow|O B|=38 \times 4=152 \mathrm{~m} \\
\tan \mid & \left.\angle O B K\left|=\frac{8}{152}=\frac{1}{19} \Rightarrow\right| \angle O B K \right\rvert\,=3 \cdot 01^{\circ}=3^{\circ}
\end{aligned}
$$

(d) At a later hole, Joan's first shot lands at the point $G$, on ground that is sloping downwards, as shown. A vertical tree, [CE], 25 metres high, stands between $G$ and the hole. The distance, $|G C|$, from the ball to the bottom of the tree is also 25 metres.
The angle of elevation at $G$ to the top of the tree, $E$, is $\theta$, where $\theta=\tan ^{-1} \frac{1}{2}$.
The height of the top of the tree above the horizontal, $G D$, is $h$ metres and $|G D|=d$ metres.
(i) Write $d$ and $|C D|$ in terms of $h$.

$$
\begin{aligned}
& \tan \theta=\frac{h}{d}=\frac{1}{2} \\
& \Rightarrow d=2 h \\
& |C D|=25-h
\end{aligned}
$$


(ii) Hence, or otherwise, find $h$.

$$
\begin{aligned}
& d^{2}+|C D|^{2}=25^{2} \\
& (2 h)^{2}+(25-h)^{2}=25^{2} \\
& 4 h^{2}+625-50 h+h^{2}=625 \\
& 5 h^{2}-50 h=0 \\
& h=0, \quad h=10 \\
& h=10 \mathrm{~m}
\end{aligned}
$$

or
$\theta=\tan ^{-1} \frac{1}{2}=26 \cdot 565^{\circ}$
$\Rightarrow|G E D|=63.435^{\circ}$
$\Rightarrow|C G E|=63.435^{\circ}$
$\Rightarrow|C G D|=63.435^{\circ}-26 \cdot 565^{\circ}=36 \cdot 87^{\circ}$
$\sin 36 \cdot 87=\frac{25-h}{25}=0 \cdot 6$
$\Rightarrow 25-h=15$
$\Rightarrow h=10 \mathrm{~m}$
or
$\left|\angle G C E=53 \cdot 14^{\circ}\right| \Rightarrow \sin 53 \cdot 14^{\circ}=\frac{2 h}{25}$
$\Rightarrow 0 \cdot 8=\frac{2 h}{25} \Rightarrow h=10 \mathrm{~m}$

## Question 9

(a) Scale 10C (0, 4, 8, 10)

Low Partial Credit:

- Effort at expressing sine function in terms of 15 and 150
- Finds third side of triangle and makes effort to find an angle


## High Partial Credit:

- Half angle found
(b) Scale 10C (0, 4, 8, 10)

Low Partial Credit:

- Cosine Rule with some correct substitution
- Effort at calculating $|A X|$ or $|T X|$

High Partial Credit:

- Cosine Rule substituted correctly
- Finds $|A X|$ and formulates for $|T X|$ (or vice versa)
(c)(i) Scale 5B (0, 2, 5)

Partial Credit:

- $t=0$ indicated

Accept h $=8 \mathrm{~m}$ without work
(c)(ii) Scale 10C (0, 4, 8, 10)

Low Partial Credit:

- $h=0$ indicated


## High Partial Credit:

- $|O B|$ found for positive value for $t$
(d)(i) Scale 5B (0, 2, 5)

Partial Credit:

- $\frac{h}{d}=\frac{1}{2}$
- $\mid C D=25-h$
(d)(ii) Scale 5D (0, 2, 3, 4, 5)

Low Partial Credit:

- Pythagoras with some correct substitution.
- Effort at evaluating $\theta$

Mid Partial Credit:

- Pythagoras correctly substituted
- $\tan ^{-1} \frac{1}{2}$ evaluated

High Partial Credit:

- Quadratic equation expanded correctly
- $\sin \angle C G D=\frac{|C D|}{|G C|}$ with $|\angle C G D|$ calculated
- $\sin \angle G C E=\frac{|G D|}{|G C|}$ with $|\angle G C E|$ calculated

