Question 1

- (a) (-4+3i) is one root of the equation $az^2 + bz + c = 0$, where $a, b, c \in \mathbb{R}$, and $i^2 = -1$. Write the other root.
- (b) Use De Moivre's Theorem to express $(1 + i)^8$ in its simplest form.
- (c) (1+i) is a root of the equation $z^2 + (-2+i)z + 3 i = 0$. Find its other root in the form m + ni, where $m, n \in \mathbb{R}$, and $i^2 = -1$.

Q1	Model Solution – 25 Marks	Marking Notes
(a)	-4 - 3i	Scale 5B (0, 2, 5) <i>Partial Credit:</i> • real or imaginary part correct
(b)	$r = \sqrt{1^{2} + 1^{2}} = \sqrt{2} \qquad \theta = \frac{\pi}{4}$ $(1 + i)^{8} = \left\{\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)\right\}^{8}$ $(1 + i)^{8} = \left\{16(\cos 2\pi + i\sin 2\pi)\right\}$ $(1 + i)^{8} = 16(1) = 16$	Scale 10C (0, 3, 7, 10) Low Partial Credit: • correct answer without use of De Moivre's • modulus or argument correct • formula • statement of De Moivre's High Partial Credit: • $16(\cos 2\pi + i \sin 2\pi)$ Note: not De Moivre and incorrect answer merits 0 marks
(c)	$z = \frac{(2-i) \pm \sqrt{(-2+i)^2 - 4(3-i)}}{2}$ = $\frac{(2-i) \pm \sqrt{4 - 4i - 1 - 12 + 4i}}{2}$ = $\frac{2-i \pm \sqrt{-9}}{2}$ = $\frac{2-i \pm 3i}{2}$ = $1 - 2i$ or $1 + i$ Or $ax^2 + bx + c = 0$ $x^2 - (\frac{-b}{a})x + \frac{c}{a} = 0$ Sum of roots $= -\frac{b}{a}$ $1 + i + z_1 = 2 - i$ $z_1 = 1 - 2i$	Scale 10C (0, 3, 7, 10) Low Partial Credit: • root formula with some substitution High Partial Credit • formula fully substituted Or Scale 10C (0, 3, 7, 10) Low Partial Credit: • equation rearranged • $-\frac{b}{a}$ High Partial Credit • correct substitution

or

$$(z-1-i)(z-z_{1})$$

$$=z^{2}-z-zi-z.z_{1}+z_{1}+z_{1}i$$

$$=z^{2}-(1+i+z_{1})z+z_{1}(1+i)$$

$$=z^{2}-(2-i)z+(3-i)$$

$$\Rightarrow z_{1}(1+i) = 3-i$$

$$z_{1} = \frac{3-i}{1+i} \cdot \frac{1-i}{1-i} = 1-2i$$
or

$$c -1-i)\overline{z^{2}-2z+iz+3-i}$$

$$=\frac{z^{2}-z-iz}{-z+2iz+3-i}$$

$$=\frac{z^{2}-z-iz}{-z+2i}$$

$$=\frac{z^{2}-z-iz}{-z+2i}$$

$$=\frac{z^{2}-z-iz}{-z+2i}$$

$$=\frac{z^{2}-z-iz}{-z+2i}$$

$$=\frac{z^{2}-z-iz}{-z+2iz+3-i}$$

$$=\frac{z^{2}-z-iz}{-z+2i}$$

$$=\frac{z^{2}-z-iz}{-z+2i}$$

$$=\frac{z^{2}-z-iz}{-z+2i}$$

$$=\frac{z^{2}-z-iz}{-z+2i}$$

$$=\frac{z^{2}-z-iz}{-z-iz}$$

$$=\frac{z^{2}-z-iz}{-z+2i}$$

$$=\frac{z^{2}-z-iz}{-z-iz}$$

$$=\frac{z^{2}-z-iz}{-z-2i}$$

$$=\frac{z^{2}-z^{2}-z-iz}{-z-2i}$$

$$=\frac{z^{2}-z-iz}{-z-2i}$$

$$=\frac{z^{2}-z-iz}{-z-2i}$$

$$=\frac{z^{2}-z^{2}-z-iz}{-z-2i}$$

$$=\frac{z^{2}-z^{2}-z-iz}{-z-2i}$$

$$=\frac{z^{2}-z^{2}-z-iz}{-z-2i}$$

$$=\frac{z^{2}-z^{2}-z^{2}-z-iz}{-z-2i}$$

$$=\frac{z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z-iz}{-z^{2}-z-iz}$$

$$=\frac{z^{2}-z^{$$