(25 marks)

Question 2

- (a) Find the range of values of x for which $|x 4| \ge 2$, where $x \in \mathbb{R}$.
- (b) Solve the simultaneous equations:

$$x^{2} + xy + 2y^{2} = 4$$

2x + 3y = -1.

(b)		
	-3y - 1	Scale 15C (0, 5, 10,15)
	$x = \frac{-3y - 1}{2}$	Low Partial Credit:
	<i>L</i>	
	$\left(\frac{-3y-1}{2}\right)^2 + \left(\frac{-3y-1}{2}\right)(y) + 2y^2 = 4$	• effort to isolate x (or y)
	$11y^2 + 4y - 15 = 0$	High Partial Credit:
	5 5	 fully correct substitution into quadratic
	(11y + 15)(y - 1) = 0	, , , , , , , , , , , , , , , , , , , ,
	$y = \frac{-15}{11}$ or $y = 1$	
	$x = \frac{-3\left(\frac{-15}{11}\right) - 1}{2} or \ x = \frac{-3(1) - 1}{2}$	
	$x = \frac{17}{11}$ or $x = -2$	
	or	
	$y = \frac{-2x - 1}{3}$	
	$x^{2} + x\left(\frac{-2x-1}{3}\right) + 2\left(\frac{-2x-1}{3}\right)^{2} = 4$	
	$11x^2 + 5x - 34 = 0$	
	(11x - 17)(x + 2) = 0	
	$x = \frac{17}{11}$ or $x = -2$	
	11 11 11 11	
	-15	
	$y = \frac{-15}{11}$ or $y = 1$	
	**	