(a) Find the range of values of x for which $|x-4| \geq 2$, where $x \in \mathbb{R}$.
(b) Solve the simultaneous equations:

$$
\begin{aligned}
x^{2}+x y+2 y^{2} & =4 \\
2 x+3 y & =-1 .
\end{aligned}
$$

Q2	Model Solution - 25 Marks	Marking Notes
(a)	$\begin{aligned} & x^{2}-8 x+16 \geq 4 \\ & x^{2}-8 x+12 \geq 0 \\ & (x-2)(x-6) \geq 0 \\ & x=2 \quad x=6 \\ & \quad\{x \mid x \leq 2\} \cup\{x \mid x \geq 6\} \end{aligned}$ Or $\begin{gathered} x-4 \geq 2 \cup x-4 \leq-2 \\ x \geq 6 \cup x \leq 2 \end{gathered}$ Or Graphical method (must indicate range on X-axis somehow) Or	Scale 10C (0, 3, 7, 10) Low Partial Credit: - either side squared - one correct linear inequality written - stating range of natural numbers only High Partial Credit: - correct solutions to quadratic Full Credit: - correct answer without work Note: use of natural numbers in range merits High Partial Credit at most Or Scale 10C (0, 3, 7, 10) Low Partial Credit: - any one straight line High Partial Credit: - three straight lines

(b)	$\begin{gathered} x=\frac{-3 y-1}{2} \\ \left(\frac{-3 y-1}{2}\right)^{2}+\left(\frac{-3 y-1}{2}\right)(y)+2 y^{2}=4 \\ 11 y^{2}+4 y-15=0 \\ (11 y+15)(y-1)=0 \\ y=\frac{-15}{11} \text { or } y=1 \\ x=\frac{-3\left(\frac{-15}{11}\right)-1}{2} \quad \text { or } x=\frac{-3(1)-1}{2} \\ x=\frac{17}{11} \text { or } x=-2 \\ \text { or } \\ y=\frac{-2 x-1}{3} \\ x^{2}+x\left(\frac{-2 x-1}{3}\right)+2\left(\frac{-2 x-1}{3}\right)^{2}=4 \\ 11 x^{2}+5 x-34=0 \\ (11 x-17)(x+2)=0 \\ x=\frac{17}{11} \quad \text { or } x=-2 \\ y=\frac{-15}{11} \text { or } y=1 \end{gathered}$	Scale 15C (0, 5, 10,15) Low Partial Credit: - effort to isolate x (or y) High Partial Credit: - fully correct substitution into quadratic

