(a) (i) $f(x)=\frac{2}{e^{x}}$ and $g(x)=e^{x}-1$, where $x \in \mathbb{R}$.

Complete the table below. Write your values correct to two decimal places where necessary.

\boldsymbol{x}	$\mathbf{0}$	$\mathbf{0 . 5}$	$\mathbf{1}$	$\ln (4)$
$f(x)=\frac{2}{e^{x}}$				
$g(x)=e^{x}-1$				

(ii) In the grid on the right, use the table to draw the graphs of $f(x)$ and $g(x)$ in the domain $0 \leq x \leq \ln (4)$. Label each graph clearly.
(iii) Use your graphs to estimate the value of x for which $f(x)=g(x)$.
(b) Solve $f(x)=g(x)$ using algebra.

Q3	Model Solution - Continued	Marking Notes
(b)	$\begin{gathered} \frac{e^{x}-1}{1}=\frac{2}{e^{x}} \\ e^{2 x}-e^{x}=2 \\ \left(e^{x}\right)^{2}-e^{x}-2=0 \\ \left(e^{x}-2\right)\left(e^{x}+1\right)=0 \\ e^{x}=2 \text { or } e^{x}=-1 \\ x=\ln 2 \end{gathered}$ $\text { or } \quad x=0.693$ Or $\left(e^{x}\right)^{2}-e^{x}-2=0$ Let $y=e^{x} \Rightarrow y^{2}-y-2=0$ $\begin{gathered} y=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-2)}}{2(1)} \\ =\frac{1 \pm \sqrt{1+8}}{2} \\ =\frac{1 \pm 3}{2} \\ \Rightarrow y=2 \text { or } y=-1 \text { (not possible) } \\ y=e^{x} \Rightarrow e^{x}=2 \\ x=\ln 2 \text { or } x=0.693 \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - substitution correct High Partial Credit - correct factors of quadratic - root formula correctly substituted $e^{x}=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-2)}}{2(1)}$ Note: oversimplification of equation (i.e. not treating as quadratic) merits Low Partial Credit at most Or Scale 10C (0, 3, 7, 10) Low Partial Credit - substitution correct High Partial Credit - root formula correctly substituted $y=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-2)}}{2(1)}$ Note: oversimplification of equation (i.e. not treating as quadratic) merits Low Partial Credit at most

