Question 4

- (a) Prove by induction that $8^n 1$ is divisible by 7 for all $n \in \mathbb{N}$.
- (b) Given $\log_a 2 = p$ and $\log_a 3 = q$, where a > 0, write each of the following in terms of p and q:
 - (i) $\log_a \frac{8}{3}$
 - (ii) $\log_a \frac{9a^2}{16}$.

24	Model Solution – 25 Marks	Marking Notes
a)		
	$P_1: 8^1 - 1 = 7$ (divisible by 7)	Scale 15D (0, 4, 7, 11, 15)
	P_k : Assume $8^k - 1$ is divisible by 7	Low Partial Credit
	$8^k - 1 = 7M$	• P ₁ step
	$8^k = 7M + 1$	
	$P_{k+1}: 8^{k+1} - 1 = 8(8^k) - 1$	Mid Partial Credit
	= 8(7M + 1) - 1	• P_k step
	= 56M + 7	• P_{k+1} step
	= 7(8M + 1)	High Partial Credit
	P_{k+1} is divisible by 7	• use of P_k step to prove P_{k+1} step
	P_1 is true	Note: accept P_1 step, P_k step and P_{k+1} step in
	P_k true $\implies P_{k+1}$ is true	any order
	So, P_{k+1} true whenever P_k true.	
	Since P_1 true, then, by induction, P_n is true for	
	all natural numbers ≥ 1	
	Or	
	$P_{k+1} = 8^{k+1} - 1$	
	$r_{k+1} = 0$ $r_{k+1} = 0$ $r_{k+1} = 8.8^{k} - 1$	
	= 0.0 - 1 = (7 + 1).8 ^k - 1	
	$=7(8^k) + (8^k - 1)$	
	Obviously divisible by 7 From P_k	
	So, P_{k+1} true whenever P_k true.	
	Since P_1 true, then, by induction, P_n is true for all natural numbers ≥ 1	

(b) (i)	$p = \log_a 2 , \qquad q = \log_a 3$ $\log_a \frac{8}{3} = \log_a 8 - \log_a 3$ $= \log_a (2)^3 - \log_a 3$ $= 3 \log_a 2 - \log_a 3$ $= 3p - q$	Scale 5C (0, 2, 4, 5) <i>low Partial Credit</i> • $\log_a 8 - \log_a 3$ <i>High Partial Credit</i> • $\log_a 8 = 3 \log_a 2$ (and/or = 3 <i>p</i>)
(ii)	$log_{a} \frac{9a^{2}}{16} = log_{a}(3a)^{2} - log_{a}(2)^{4}$ = 2 log_{a} 3 + 2 log_{a} a - 4 log_{a} 2 = 2q + 2(1) - 4p = 2q + 2 - 4p	Scale 5D (0, 2, 3, 4, 5) Low Partial Credit • $\log_a 9a^2 - \log_a 16$ Mid Partial Credit • $2\log_a 3$ • $2\log_a a$ • $4\log_a 2$ • $4p$ or $2q$ or 2 High Partial Credit • $2(\log_a 3 + \log_a a) - 4\log_a 2$ or equivalent