(a) Prove by induction that $8^{n}-1$ is divisible by 7 for all $n \in \mathbb{N}$.
(b) Given $\log _{a} 2=p$ and $\log _{a} 3=q$, where $a>0$, write each of the following in terms of p and q :
(i) $\log _{a} \frac{8}{3}$
(ii) $\log _{a} \frac{9 a^{2}}{16}$.

Q4	Model Solution - 25 Marks	Marking Notes
(a)	$\begin{gathered} P_{1}: 8^{1}-1=7 \text { (divisible by } 7 \text {) } \\ P_{k}: \text { Assume } 8^{k}-1 \text { is divisible by } 7 \\ 8^{k}-1=7 M \\ 8^{k}=7 M+1 \\ P_{k+1}: 8^{k+1}-1=8\left(8^{k}\right)-1 \\ =8(7 M+1)-1 \\ =56 M+7 \\ =7(8 M+1) \\ P_{k+1} \text { is divisible by } 7 \\ \\ P_{1} \text { is true } \quad \Rightarrow \quad P_{k+1} \text { is true } \end{gathered}$ So, $\quad P_{k+1}$ true whenever P_{k} true. Since P_{1} true, then, by induction, P_{n} is true for all natural numbers ≥ 1 Or $\begin{aligned} P_{k+1} & =8^{k+1}-1 \\ & =8.8^{k}-1 \\ & =(7+1) .8^{k}-1 \\ & =7\left(8^{k}\right)+\left(8^{k}-1\right) \end{aligned}$ So, P_{k+1} true whenever P_{k} true. Since P_{1} true, then, by induction, P_{n} is true for all natural numbers ≥ 1	Scale 15D (0, 4, 7, 11, 15) Low Partial Credit - P_{1} step Mid Partial Credit - P_{k} step - P_{k+1} step High Partial Credit - use of P_{k} step to prove P_{k+1} step Note: accept P_{1} step, P_{k} step and P_{k+1} step in any order

(b) (i)	$\begin{gathered} p=\log _{\mathrm{a}} 2, \quad q=\log _{\mathrm{a}} 3 \\ \log _{a} \frac{8}{3}=\log _{a} 8-\log _{a} 3 \\ =\log _{a}(2)^{3}-\log _{a} 3 \\ =3 \log _{\mathrm{a}} 2-\log _{\mathrm{a}} 3 \\ =3 p-q \end{gathered}$	Scale 5C (0, 2, 4, 5) Iow Partial Credit - $\log _{a} 8-\log _{a} 3$ High Partial Credit - $\log _{a} 8=3 \log _{a} 2 \quad$ (and/or $=3 p$)
(ii)	$\begin{gathered} \log _{\mathrm{a}} \frac{9 a^{2}}{16}=\log _{\mathrm{a}}(3 a)^{2}-\log _{\mathrm{a}}(2)^{4} \\ =2 \log _{\mathrm{a}} 3+2 \log _{\mathrm{a}} a-4 \log _{\mathrm{a}} 2 \\ \quad=2 q+2(1)-4 p \\ \quad=2 q+2-4 p \end{gathered}$	Scale 5D (0, 2, 3, 4, 5) Low Partial Credit - $\log _{a} 9 a^{2}-\log _{a} 16$ Mid Partial Credit - $2 \log _{\mathrm{a}} 3$ - $2 \log _{a} a$ - $4 \log _{a} 2$ - $4 p$ or $2 q$ or 2 High Partial Credit - $2\left(\log _{a} 3+\log _{a} a\right)-4 \log _{a} 2$ or equivalent

