
Question 5

(a) (i) The lengths of the sides of a right-angled triangle are given by the expressions x - 1, 4x, and 5x - 9, as shown in the diagram. Find the value of x.

- (ii) Verify, with this value of x, that the lengths of the sides of the triangle above form a pythagorean triple.
- (b) (i) Show that f(x) = 3x 2, where $x \in \mathbb{R}$, is an injective function.
 - (ii) Given that f(x) = 3x 2, where $x \in \mathbb{R}$, find a formula for f^{-1} , the inverse function of f. Show your work.

Q5	Model Solution – 25 Marks	Marking Notes
(a)		
(i)	$(5x - 9)^{2} = (x - 1)^{2} + (4x)^{2}$ $8x^{2} - 88x + 80 = 0$ $x^{2} - 11x + 10 = 0$ $(x - 1)(x - 10) = 0$ $x = 1 \text{ or } x = 10$ $x = 10$	 Scale 10D (0, 2, 5, 8, 10) Low Partial Credit any use of Pythagoras Mid Partial Credit fully correct substitution High Partial Credit both roots correct
(a) (ii)	Sides=9, 40, 41 $9^2 + 40^2 = 41^2$ 81 + 1600 = 1681 1681 = 1681	Scale 5B (0, 2, 5) Partial Credit • 9 or 40 or 41 • using 1 or -10 from candidates work
(b) (i)	Function is bijective if inverse exists $f^{-1}(x) = \frac{x+2}{3}$ \Rightarrow Function is injective. or Horizontal line test. or $f(a) = f(b)$ $3a - 2 = 3b - 2$ $\Rightarrow a = b$ or $\forall a, b \in A, f(a) = f(b) \Rightarrow a = b$	Scale 5B (0, 2, 5) <i>Partial Credit</i> • $f^{-1}(x)$ written • $f(x)$ drawn • $f(a) = f(b)$
(b) (ii)	$f(x) = 3x - 2$ $f^{-1}(x) = \frac{x + 2}{3}$	Scale 5B (0, 2, 5) <i>Partial Credit</i> • any relevant transpose