
Question 9

(a) At the first stage of a pattern, a point moves 4 units from the origin in the positive direction along the *x*-axis. For the second stage, it turns left and moves 2 units parallel to the *y*-axis. For the third stage, it turns left and moves 1 unit parallel to the *x*-axis.

At each stage, after the first one, the point turns left and moves half the distance of the previous stage, as shown.

- (i) How many stages has the point completed when the total distance it has travelled, along its path, is 7.9375 units?
- (ii) Find the maximum distance the point can move, along its path, if it continues in this pattern indefinitely.
- (iii) Complete the second row of the table below showing the changes to the x co-ordinate, the first nine times the point moves to a new position. Hence, or otherwise, find the x co-ordinate and the y co-ordinate of the final position that the point is approaching, if it continues indefinitely in this pattern.

Stage	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th	9 th
Change in x	+4	0	-1						
Change in y									

- (b) A male bee comes from an unfertilised egg, i.e. he has a female parent but he does not have a male parent. A female bee comes from a fertilised egg, i.e. she has a female parent and a male parent.
 - (i) The following diagram shows the ancestors of a certain male bee. We identify his generation as G_1 and our diagram goes back to G_4 . Continue the diagram to G_5 .

<i>G</i> ₁	<i>G</i> ₂	G3	G 4	G_5	
			Female		
		Female			
Male —	→ Female		Male		
		Male —	→ Female		

(ii) The number of ancestors of this bee in each generation can be calculated by the formula

$$G_{n+2} = G_{n+1} + G_n,$$

where $G_1 = 1$ and $G_2 = 1$, as in the diagram. Use this formula to calculate the number of ancestors in G_6 and in G_7 .

(iii) The number of ancestors in each generation can also be calculated by using the formula

$$G_n = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}}$$

Use this formula to verify the number of ancestors in G_3 .

Q9	Model Solution – 55 Marks	Marking Notes
(a)(i)	$4, 2, 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$ $S_n = \frac{a(1 - r^n)}{1 - r}$ $S_n = \frac{4\left(1 - \left(\frac{1}{2}\right)^n\right)}{1 - \frac{1}{2}} = 7.9375$ $-\frac{1}{2^n} = -\frac{1}{128}$ $n = 7$	Scale 10C (0, 3, 7, 10) Low Partial Credit • some listing of terms • S _n formula High Partial Credit • listing of exactly 7 correct terms • formula fully substituted
(a) (ii)	$S_{\infty} = \frac{a}{1-r}$ $S_{\infty} = \frac{4}{1-\frac{1}{2}} = 8$	Scale 10C (0, 3, 7, 10) Low Partial Credit • S_{∞} formula High Partial Credit • formula fully substituted

		1	2	3	4	5	6	7	8	9		
Chg	x	+4	0	-1	0	$\frac{1}{4}$	0	$-\frac{1}{16}$	0	$\frac{1}{64}$		
Chg	у	0	2	0	$-\frac{1}{2}$	0	$\frac{1}{8}$	0	$-\frac{1}{32}$	0		
(a) (iii)		$S_{\infty} = \frac{4}{1 - \left(-\frac{1}{4}\right)} = 3 \cdot 2 = \frac{16}{5}$ $S_{\infty} = \frac{2}{1 - \left(-\frac{1}{4}\right)} = 1 \cdot 6 = \frac{8}{5}$ $\left(\frac{16}{5}, \frac{8}{5}\right) \text{ or } (3 \cdot 2, 1 \cdot 6)$					Scale 15D (0, 4, 7, 11, 15) Low Partial Credit • 2 extra entries correct in either row Mid Partial Credit • either row fully correct High Partial Credit • one co-ordinate correct Notes: - need to see S_{∞} correctly used to move beyond Mid Partial Credit - no S_{∞} merits Mid Partial Credit at most					
(b) (i)	G_5	G_5 =Female,Male,Female,Female,Male				Partia	Scale 5B (0, 2, 5) <i>Partial Credit</i> • one correct entry					
(b) (ii)	$G_6 = G_5 + G_4 = 5 + 3 = 8$ $G_7 = G_6 + G_5 = 8 + 5 = 13$					Low PG • G ₆ • G ₇ • G ₇ • 8 a High P	Scale 10C (0, 3, 7, 10) Low Partial Credit • $G_6 = G_5 + G_4$ • $G_7 = G_6 + G_5$ • G_7 or G_6 correct • 8 and/or 13 without work High Partial Credit • correct substitution in both					

(b)
(iii)

$$G_{3} = \frac{(1+\sqrt{5})^{3} - (1-\sqrt{5})^{3}}{2^{3}\sqrt{5}} = 2$$

$$(1+\sqrt{5})^{3} = (1+3\sqrt{5}+3\sqrt{5}^{2}+\sqrt{5}^{3})$$

$$= 16+8\sqrt{5}$$

$$(1-\sqrt{5})^{3} = (1-3\sqrt{5}+3\sqrt{5}^{2}-\sqrt{5}^{3})$$

$$= 16-8\sqrt{5}$$

$$G_{3} = \frac{6\sqrt{5}+2\sqrt{5}^{3}}{8\sqrt{5}}$$

$$= \frac{6+2\sqrt{5}^{2}}{8} = \frac{16}{8} = 2$$
 Q. E. D.

Scale 5B (0, 2, 5)

Partial Credit

- some correct substitution
- using approximate value for $\sqrt{5}$
- $G_3 = 2$
- some effort at cubing

Note: use of $\sqrt{5}$ as approximation, even if rounded off to 2 at end of work merits at most Partial Credit