## Question 9

(a) At the first stage of a pattern, a point moves 4 units from the origin in the positive direction along the $x$-axis. For the second stage, it turns left and moves 2 units parallel to the $y$-axis. For the third stage, it turns left and moves 1 unit parallel to the $x$-axis.
At each stage, after the first one, the point turns left and moves half the distance of the previous stage, as shown.

(i) How many stages has the point completed when the total distance it has travelled, along its path, is 7.9375 units?

(ii) Find the maximum distance the point can move, along its path, if it continues in this pattern indefinitely.

(iii) Complete the second row of the table below showing the changes to the $x$ co-ordinate, the first nine times the point moves to a new position. Hence, or otherwise, find the $x$ co-ordinate and the $y$ co-ordinate of the final position that the point is approaching, if it continues indefinitely in this pattern.

| Stage | $\mathbf{1}^{\text {st }}$ | $\mathbf{2}^{\text {nd }}$ | $\mathbf{3}^{\text {rd }}$ | $\mathbf{4}^{\text {th }}$ | $\mathbf{5}^{\text {th }}$ | $\mathbf{6}^{\text {th }}$ | $\mathbf{7}^{\text {th }}$ | $\mathbf{8}^{\text {th }}$ | $\mathbf{9}^{\text {th }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Change <br> in $\boldsymbol{x}$ | +4 | 0 | -1 |  |  |  |  |  |  |
| Change <br> in $\boldsymbol{y}$ |  |  |  |  |  |  |  |  |  |



| Previous | Page | Running |
| :--- | :--- | :--- |

(b) A male bee comes from an unfertilised egg, i.e. he has a female parent but he does not have a male parent. A female bee comes from a fertilised egg, i.e. she has a female parent and a male parent.
(i) The following diagram shows the ancestors of a certain male bee. We identify his generation as $G_{1}$ and our diagram goes back to $G_{4}$. Continue the diagram to $G_{5}$.

| $\boldsymbol{G}_{1}$ | $\boldsymbol{G}_{2}$ | $G_{3}$ | $G_{4}$ | $G_{5}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  |  | , Female |  |
|  |  | Female |  |  |
| Male | $\rightarrow$ Female |  | $\pm$ Male |  |
|  |  | $\geq$ Male | $\rightarrow$ Female |  |
|  |  |  |  |  |

(ii) The number of ancestors of this bee in each generation can be calculated by the formula

$$
G_{\mathrm{n}+2}=G_{\mathrm{n}+1}+G_{\mathrm{n}},
$$

where $G_{1}=1$ and $G_{2}=1$, as in the diagram.
Use this formula to calculate the number of ancestors in $G_{6}$ and in $G_{7}$.

(iii) The number of ancestors in each generation can also be calculated by using the formula

$$
G_{n}=\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}}
$$

Use this formula to verify the number of ancestors in $G_{3}$.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

