Question 1

The points $A(6,-2), B(5,3)$ and $C(-3,4)$ are shown on the diagram.
(a) Find the equation of the line through B which is perpendicular to $A C$.

(b) Use your answer to part (a) above to find the co-ordinates of the orthocentre of the triangle $A B C$.

Q1	Model Solution - 25 Marks	Marking Notes
(a)	$\begin{gathered} \text { Slope } A C=-\frac{2}{3} \\ \text { perp. slope }=\frac{3}{2} \\ y-3=\frac{3}{2}(x-5) \\ 3 x-2 y=9 \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - slope formula with some relevant substitution - $3=5 m+c$ - $y-y_{1}=m\left(x-x_{1}\right)$ with x_{1} or y_{1} or both substituted High Partial Credit - perpendicular slope - equation of line through B parallel to $A C$
(b)	Point of intersection of the altitudes $\begin{gathered} \text { Slope } A B=\frac{3+2}{5-6}=-\frac{5}{1} \\ \text { perp. slope }=\frac{1}{5} \\ y-4=\frac{1}{5}(x+3) \\ x-5 y+23=0 \end{gathered}$ Orthocentre: $\begin{aligned} & 3 x-2 y=9 \cap x-5 y=-23 \\ & \Rightarrow y=6 \quad \begin{array}{c} x=7 \\ (7,6) \end{array} \end{aligned}$ or If $B C$ chosen: $\begin{gathered} \text { Slope } B C=\frac{3-4}{5+3}=-\frac{1}{8} \\ \text { perp. slope }=8 \end{gathered}$ Equation of altitude: $y+2=8(x-6)$ Equation: $8 x-y=50$ Orthocentre: $\begin{aligned} & 3 x-2 y=9 \cap 8 x-y=50 \\ & \Rightarrow y=6 \quad \begin{array}{c} x=7 \\ (7,6) \end{array} \end{aligned}$	Scale 15D (0, 4, 7,11,15) Low Partial Credit - demonstration of understanding of orthocentre (e.g. mentions altitude) - slope formula with some relevant substitution - altitude from part (a) Mid Partial Credit - equation of an altitude other than (a) - some relevant substitution towards finding a second altitude and altitude from (a) - correct construction High Partial Credit - two correct altitudes - correct construction with orthocentre $(7,6)$

