Question 4 (25 marks)

The diagram shows a semi-circle standing on a diameter [AC], and $[BD] \perp [AC]$.

(a) (i) Prove that the triangles ABD and DBC are similar.

(ii) If |AB| = x, |BC| = 1, and |BD| = y, write y in terms of x.

(b) Use your result from part (a)(ii) to construct a line segment equal in length (in centimetres) to the square root of the length of the line segment [TU] which is drawn below.

Q4	Model Solution – 25 Marks	Marking Notes
(a)		
(i)	$ \angle ABD = \angle CBD = 90^{\circ}$ (i) $ \angle BDC + \angle BCD = 90^{\circ}$ angles in triangle sum to 180° $ \angle ADB + \angle BDC = 90^{\circ}$ angle in semicircle $ \angle ADB + \angle BDC = \angle BDC + \angle BCD $ $ \angle ADB = \angle BCD $ (ii) \therefore Triangles are equiangular (or similar) or $ \angle ABD = \angle CBD = 90^{\circ}$ (i) $ \angle DAB = \angle DAC $ same angle $\Rightarrow \angle ADB $ $= \angle DCA $ (reasons as above) which is also $\angle DCB$ (ii)	 Scale 15C (0, 5, 10, 15) Low Partial Credit identifies one angle of same size in each triangle High Partial Credit identifies second angle of same size in each triangle implies triangles are similar without justifying (ii) in model solution or equivalent
(a) (ii)	$\frac{y}{1} = \frac{x}{y}$ $\Rightarrow y^2 = x$ $y = \sqrt{x}$ or $ AD ^2 + DC ^2 = AC ^2$ $ AD = \sqrt{x^2 + y^2}$ $ DC = \sqrt{y^2 + 1}$ $x^2 + y^2 + y^2 + 1 = (x + 1)^2$ $2y^2 = 2x$ $y = \sqrt{x}$ Or $\frac{\sqrt{x^2 + y^2}}{\sqrt{y^2 + 1}} = \frac{y}{1} \Rightarrow x^2 + y^2 = y^2(y^2 + 1)$ $y^4 = x^2 \Rightarrow y^2 = x \Rightarrow y = \sqrt{x}$	Scale 5C (0, 2, 4, 5) Low Partial Credit • one set of corresponding sides identified • indicates relevant use of Pythagoras High Partial Credit • corresponding sides fully substituted • expression in y^2 or y^4 , i.e. fails to finish

Scale 5C (0, 2, 4, 5)

Low Partial Credit

- perpendicular line drawn at *U* or *T*
- relevant use of 1 cm length
- mid point of incorrect extended segment constructed

High Partial Credit

• correct mid-point constructed