Question 4 (25 marks) The diagram shows a semi-circle standing on a diameter [AC], and $[BD] \perp [AC]$. (a) (i) Prove that the triangles ABD and DBC are similar. (ii) If |AB| = x, |BC| = 1, and |BD| = y, write y in terms of x. (b) Use your result from part (a)(ii) to construct a line segment equal in length (in centimetres) to the square root of the length of the line segment [TU] which is drawn below. | Q4 | Model Solution – 25 Marks | Marking Notes | |-------------|---|---| | (a) | | | | (i) | $ \angle ABD = \angle CBD = 90^{\circ}$ (i)
$ \angle BDC + \angle BCD = 90^{\circ}$ angles in triangle
sum to 180°
$ \angle ADB + \angle BDC = 90^{\circ}$ angle in
semicircle
$ \angle ADB + \angle BDC = \angle BDC + \angle BCD $
$ \angle ADB = \angle BCD $ (ii)
\therefore Triangles are equiangular (or similar)
or
$ \angle ABD = \angle CBD = 90^{\circ}$ (i)
$ \angle DAB = \angle DAC $ same angle $\Rightarrow \angle ADB $
$= \angle DCA $ (reasons as above) which is
also $\angle DCB$ (ii) | Scale 15C (0, 5, 10, 15) Low Partial Credit identifies one angle of same size in each triangle High Partial Credit identifies second angle of same size in each triangle implies triangles are similar without justifying (ii) in model solution or equivalent | | (a)
(ii) | $\frac{y}{1} = \frac{x}{y}$ $\Rightarrow y^2 = x$ $y = \sqrt{x}$ or $ AD ^2 + DC ^2 = AC ^2$ $ AD = \sqrt{x^2 + y^2}$ $ DC = \sqrt{y^2 + 1}$ $x^2 + y^2 + y^2 + 1 = (x + 1)^2$ $2y^2 = 2x$ $y = \sqrt{x}$ Or $\frac{\sqrt{x^2 + y^2}}{\sqrt{y^2 + 1}} = \frac{y}{1} \Rightarrow x^2 + y^2 = y^2(y^2 + 1)$ $y^4 = x^2 \Rightarrow y^2 = x \Rightarrow y = \sqrt{x}$ | Scale 5C (0, 2, 4, 5) Low Partial Credit • one set of corresponding sides identified • indicates relevant use of Pythagoras High Partial Credit • corresponding sides fully substituted • expression in y^2 or y^4 , i.e. fails to finish | Scale 5C (0, 2, 4, 5) ## Low Partial Credit - perpendicular line drawn at *U* or *T* - relevant use of 1 cm length - mid point of incorrect extended segment constructed ## High Partial Credit • correct mid-point constructed