The diagram shows a semi-circle standing on a diameter $[A C]$, and $[B D] \perp[A C]$.
(a) (i) Prove that the triangles $A B D$ and $D B C$ are similar.

(ii) If $|A B|=x, \quad|B C|=1$, and $|B D|=y$, write y in terms of x.
(b) Use your result from part (a)(ii) to construct a line segment equal in length (in centimetres) to the square root of the length of the line segment [TU] which is drawn below.

Q4	Model Solution - 25 Marks	Marking Notes
$\begin{aligned} & \text { (a) } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \|\angle A B D\|=\|\angle C B D\|=90^{\circ} \ldots \ldots . . \text { (i) } \\ & \|\angle B D C\|+\|\angle B C D\|=90^{\circ} \ldots \text { angles in triangle } \\ & \text { sum to } 180^{\circ} \\ & \|\angle A D B\|+\|\angle B D C\|=90^{\circ} \ldots . \text { angle in } \\ & \text { semicircle } \\ & \|\angle A D B\|+\|\angle B D C\|=\|\angle B D C\|+\|\angle B C D\| \\ & \|\angle A D B\|=\|\angle B C D\| \ldots \text { (ii) } \\ & \therefore \text { Triangles are equiangular (or similar) } \\ & \text { or } \\ & \|\angle A B D\|=\|\angle C B D\|=90^{\circ} \ldots \ldots . . \text { (i) } \\ & \|\angle D A B\|=\|\angle D A C\| \text { same angle } \Rightarrow\|\angle A D B\| \\ & =\|\angle D C A\| \text { (reasons as above) which is } \\ & \text { also } \angle D C B \ldots \text { (ii) } \end{aligned}$	Scale 15C (0, 5, 10, 15) Low Partial Credit - identifies one angle of same size in each triangle High Partial Credit - identifies second angle of same size in each triangle - implies triangles are similar without justifying (ii) in model solution or equivalent
(a) (ii)	$\begin{gathered} \frac{y}{1}=\frac{x}{y} \\ \Rightarrow y^{2}=x \\ y=\sqrt{x} \end{gathered}$ or $\begin{gathered} \|A D\|^{2}+\|D C\|^{2}=\|A C\|^{2} \\ \|A D\|=\sqrt{x^{2}+y^{2}} \\ \|D C\|=\sqrt{y^{2}+1} \\ x^{2}+y^{2}+y^{2}+1=(x+1)^{2} \\ 2 y^{2}=2 x \\ y=\sqrt{x} \end{gathered}$ Or $\begin{gathered} \frac{\sqrt{x^{2}+y^{2}}}{\sqrt{y^{2}+1}}=\frac{y}{1} \Rightarrow x^{2}+y^{2}=y^{2}\left(y^{2}+1\right) \\ y^{4}=x^{2} \Rightarrow y^{2}=x \Rightarrow y=\sqrt{x} \end{gathered}$	Scale 5C (0, 2, 4, 5) Low Partial Credit - one set of corresponding sides identified - indicates relevant use of Pythagoras High Partial Credit - corresponding sides fully substituted - expression in y^{2} or y^{4}, i.e. fails to finish

(b)

