

Question 7

A glass Roof Lantern in the shape of a pyramid has a rectangular base *CDEF* and its apex is at *B* as shown. The vertical height of the pyramid is |AB|, where *A* is the point of intersection of the diagonals of the base as shown in the diagram. Also |CD| = 2.5 m and |CF| = 3 m.

- (a) (i) Show that |AC| = 1.95 m, correct to two decimal places.
 - (ii) The angle of elevation of *B* from *C* is 50° (i.e. $|\angle BCA| = 50^\circ$). Show that $|AB| = 2 \cdot 3$ m, correct to one decimal place.
 - (iii) Find |BC|, correct to the nearest metre.
 - (iv) Find $|\angle BCD|$, correct to the nearest degree.
 - (v) Find the area of glass required to glaze all four triangular sides of the pyramid. Give your answer correct to the nearest m².
- (b) Another Roof Lantern, in the shape of a pyramid, has a square base *CDEF*. The vertical height |AB| = 3 m, where *A* is the point of intersection of the diagonals of the base as shown. The angle of elevation of *B* from *C* is 60°

(i.e. $|\angle BCA| = 60^{\circ}$). Find the length of the side of the square base of the lantern. Give your answer in the form \sqrt{a} m, where $a \in \mathbb{N}$.

Q7	Model Solution – 55 Marks	Marking Notes
(a) (i)	$ EC ^{2} = 3^{2} + 2 \cdot 5^{2} = 15 \cdot 25$ $ EC = \sqrt{15 \cdot 25}$ $ EC = 3 \cdot 905$ $\Rightarrow AC = 1 \cdot 9525$ $= 1 \cdot 95$	Scale 10C (0, 3, 7, 10) Low Partial Credit • Pythagoras with relevant substitution High Partial Credit • $ EC $ correct • $ AC = \frac{1}{2}\sqrt{15\cdot25}$
(a) (ii)	$\tan 50^{\circ} = \frac{ AB }{1.95}$ $ AB = 1.95(1.19175) = 2.23239$ $ AB = 2.3$	Scale 10B (0, 5, 10) <i>Partial Credit</i> • tan formulated correctly
(a) (iii)	$ BC ^{2} = 1.95^{2} + 2.3^{2}$ $ BC = 3 \cdot 015377$ $ BC = 3$ Also: $\sin 40^{\circ} = \frac{1.95}{ BC }$ or $\cos 40^{\circ} = \frac{2.3}{ BC }$ or $\cos 50^{\circ} = \frac{1.95}{ BC }$ or $\sin 50^{\circ} = \frac{2.3}{ BC }$	Scale 10C (0, 3, 7, 10) Low Partial Credit • Pythagoras with relevant substitution High Partial Credit • Pythagoras fully substituted • $ BC = \frac{1.95}{\sin 40^{\circ}}$ (i.e. $ BC $ isolated)
(a) (iv)	$3^{2} = 3^{2} + 2 \cdot 5^{2} - 2(3)(2 \cdot 5) \cos \alpha$ $15 \cos \alpha = 6 \cdot 25$ $\alpha = 65^{\circ}$ or $\cos \alpha = \frac{1 \cdot 25}{3}$ $\alpha = 65^{\circ}$	 Scale 10C (0, 3, 7, 10) Low Partial Credit cosine rule with some relevant substitution cosine ratio with some relevant substitutions identifies three sides of triangle BCD High Partial Credit cosine rule with full relevant substitutions cosine ratio with full relevant substitutions

(a) (v)	$A = 2 \times \text{isosceles triangle} + 2 \times \text{equilateral}$ triangle $= 2 \times \left[\frac{1}{2}(2 \cdot 5)(3) \sin 65^\circ\right] + 2 \times \left[\frac{1}{2}(3)(3) \sin 60^\circ\right]$ $= 14 \cdot 59$ A = 15	 Scale 10D (0,3,5,8,10) Low Partial Credit recognises area of 4 triangles Mid Partial Credit Area of 1 triangle correct High Partial Credit area of isosceles triangle and equilateral triangle Note: Area = 4 isosceles or 4 equilateral triangles merit HPC at most
(b)	$\tan 60^\circ = \frac{3}{ CA }$ $\implies CA = \sqrt{3}$ $ CE = 2\sqrt{3}$ $x^2 + x^2 = (2\sqrt{3})^2$ $x = \sqrt{6}$	Scale 5C (0, 2, 4, 5) Low Partial Credit • effort at Pythagoras but without $ CA $ (or CE) • $ CA $ found High Partial Credit • $ CE = 2\sqrt{3}$