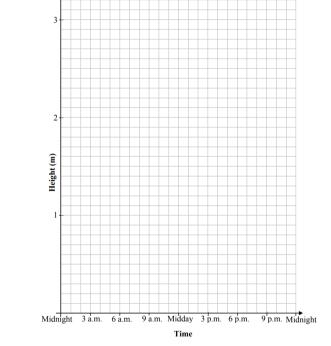
The height of the water in a port was measured over a period of time. The average height was found to be 1.6 m. The height measured in metres, h(t), was modelled using the function

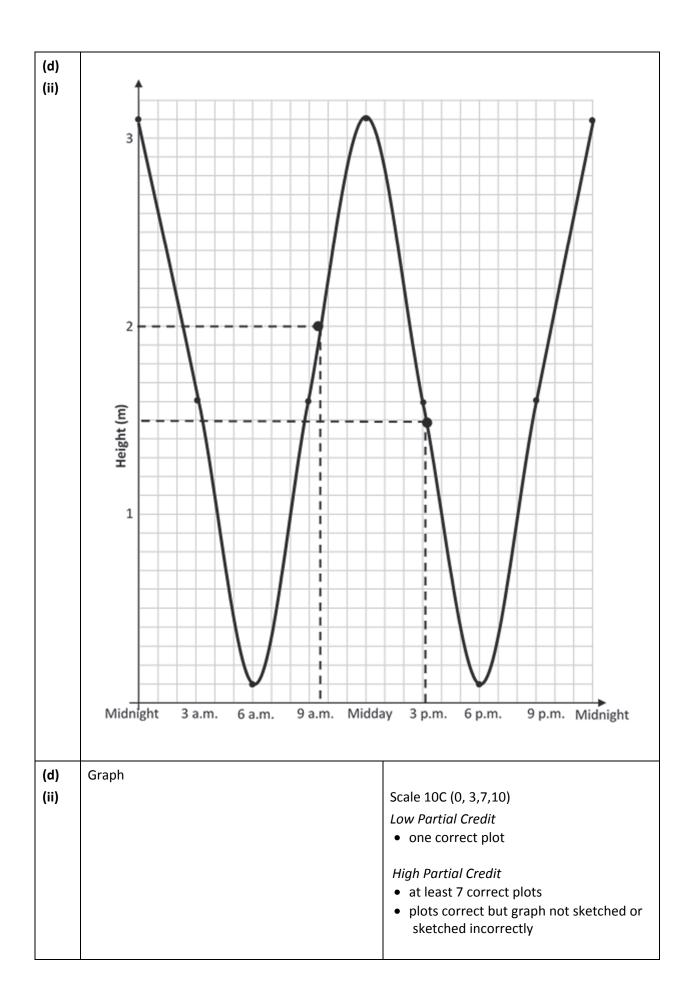

$$h(t) = 1.6 + 1.5 \cos\left(\frac{\pi}{6}t\right)$$

where *t* represents the number of hours since the last recorded high tide and $\left(\frac{\pi}{6}t\right)$ is expressed in radians.

- (a) Find the period and range of h(t).
- (b) Find the maximum height of the water in the port.
- (c) Find the rate at which the height of the water is changing when t = 2, correct to two decimal places. Explain your answer in the context of the question.
- (d) (i) On a particular day the high tide occurred at midnight (i.e. t = 0). Use the function to complete the table and show the height, h(t), of the water between midnight and the following midnight.

$h(t) = 1.6 + 1.5\cos\left(\frac{\pi}{6}t\right)$									
Time	Midnight	3 a.m.	6 a.m.	9 a.m.	12 noon	3 p.m.	6 p.m.	9 p.m.	Midnight
t (hours)	0	3							
h(t) (m)									

(ii) Sketch the graph of h(t) between midnight and the following midnight.


- (e) Find, from your sketch, the difference in water height between low tide and high tide.
- (f) A fully loaded barge enters the port, unloads its cargo and departs some time later. The fully loaded barge requires a minimum water level of 2 m. When the barge is unloaded it only requires 1.5 m. Use your graph to estimate the **maximum** amount of time that the barge can spend in port, without resting on the sea-bed.

Model Solution – 45 Marks	Marking Notes
2π	Scale 5C (0, 2,4, 5)
Period = $\frac{\pi}{1}$ = 12 hours	Low Partial Credit
6	• some use of 2π or $\frac{\pi}{2}$
Panga -	• some use of 2π or $\frac{\pi}{6}$
[1.6 - 1.5, 1.6 + 1.5] = [0.1 m, 3.1 m]	 range of cos function
	High partial credit
	 period or range correct
	Note: Accept correct period and/or range without work
Max = $1.6 + 1.5(1) = 3.1 \text{ m}$.	Scale 5B (0,2, 5)
or	Partial Credit
3.1 m from range	 max occurs when cos A = 1 or t = 0
	 effort at h'(t)
	Note: Accept correct answer without work
$h(t) = 1 \Gamma(t) \pi T$	Scale 5C (0, 2, 4, 5)
$h'(t) = 1.5(-\sin\frac{1}{6})\frac{1}{6}$	Low Partial Credit
	 effort at differentiation
$h'(2) = 1.5(-\sin\frac{2\pi}{3})\frac{\pi}{3}$	
0 0	High Partial Credit
,	 correct numerical answer but not in context
Tide is going out at a rate of 0.68 m per hour at 2 am	
	Period = $\frac{2\pi}{\frac{\pi}{6}}$ = 12 hours Range = [1.6 - 1.5, 1.6 + 1.5] = [0.1 m, 3.1 m] Max = 1.6 + 1.5(1) = 3.1 m. or 3.1 m from range $h'(t) = 1.5(-\sin\frac{\pi t}{6})\frac{\pi}{6}$ $h'(2) = 1.5(-\sin\frac{2\pi}{6})\frac{\pi}{6}$ = -0.68017 = -0.68 m/h Tide is going out at a rate of 0.68 m per hour

(d)(i)									
$h(t) = 1 \cdot 6 + 1 \cdot 5 \cos\left(\frac{\pi}{6}t\right)$									
Time	12 am	3 am	6 am	9 am	12 pm	3 pm	6 pm	9 pm	12 am
t	0	3	6	9	12	15	18	21	24
Height	3.1	1.6	·1	1.6	3.1	1.6	·1	1.6	3.1

(d)	
(i)	Scale 10C (0, 3, 7, 10)
	Low Partial Credit
	 one correct height
	<i>High Partial Credit</i>five correct heights

(e)		
	Low tide = 0.1 m	Scale 5B (0, 2, 5)
	High tide = 3·1 m	Partial Credit
	Difference = $3 \cdot 1 - 0 \cdot 1 = 3 \text{ m}$	 height of Low tide or High tide correctly identified
		Notes:
		 (i) candidates may show work for this section on graph
		(ii) accept values from candidate's graph
		(iii) accept correct answer from graph without work
(f)		
	Enter port at 9:30 approx	Scale 5B (0, 2, 5)
	Leave port before 15:15 approx	Partial Credit
	Time = 15:15 – 9:30 = 5 hr 45 min approx.	 time of entry to port or leave port correctly identified
		 value(s) for h = 2 and/or h = 1.5 on sketch
		 time estimated using relevant values other than those required for the maximum time.
		Notes:
		(i) candidates may show relevant work for this section on graph
		(ii) accept values from candidate's graph