Question 7

A glass Roof Lantern in the shape of a pyramid has a rectangular base $C D E F$ and its apex is at B as shown. The vertical height of the pyramid is $|A B|$, where A is the point of intersection of the diagonals of the base as shown in the diagram.
Also $|C D|=2.5 \mathrm{~m}$ and $|C F|=3 \mathrm{~m}$.
(a) (i) Show that $|A C|=1.95 \mathrm{~m}$, correct to two decimal places.

(ii) The angle of elevation of B from C is 50° (i.e. $|\angle B C A|=50^{\circ}$). Show that $|A B|=2.3 \mathrm{~m}$, correct to one decimal place.

(iii) Find $|B C|$, correct to the nearest metre.

(iv) Find $|\angle B C D|$, correct to the nearest degree.

(v) Find the area of glass required to glaze all four triangular sides of the pyramid. Give your answer correct to the nearest m^{2}.

Previous	page	running

(b) Another Roof Lantern, in the shape of a pyramid, has a square base $C D E F$. The vertical height $|A B|=3 \mathrm{~m}$, where A is the point of intersection of the diagonals of the base as shown.
The angle of elevation of B from C is 60° (i.e. $|\angle B C A|=60^{\circ}$).

Find the length of the side of the square base of the lantern. Give your answer in the form $\sqrt{a} \mathrm{~m}$, where $a \in \mathbb{N}$.

