Question 1

- (a) Write the function $f(x) = 2x^2 7x 10$, where $x \in \mathbb{R}$, in the form $a(x + h)^2 + k$, where a, h, and $k \in \mathbb{Q}$.
- (b) Hence, write the minimum point of f.
- (c) (i) Explain why f must have two real roots.
 - (ii) Write the roots of f(x) = 0 in the form $p \pm \sqrt{q}$, where p and $q \in \mathbb{Q}$.

Q1	Model Solution – 25 Marks	Marking Notes
(a)	$2\left(x^{2} - \frac{7}{2}x - 5\right)$ = $2\left(\left(x - \frac{7}{4}\right)^{2} - \frac{129}{16}\right)$ = $2\left(\left(x - \frac{7}{4}\right)^{2}\right) - \frac{129}{8}$	 Scale 5D (0, 2, 3, 4, 5) Low Partial Credit: a = 2 identified explicitly or as factor Mid partial Credit: Completed square High partial Credit: h or k identified from work
(b)	$\left(\frac{7}{4}, \frac{-129}{8}\right)$	 Scale 10B (0, 4, 10) Partial Credit: One relevant co-ordinate identified

(c) (i)	f(x) has min point as a > 0 y co-ordinate of min < 0 ⇒graph must cut x-axis twice hence two real roots. or $b^2 - 4ac = 49 + 80 > 0$ Therefore real roots	 Scale 5B (0, 3, 5) Partial Credit: Mention of a > 0 b² - 4ac Identifies location of one or two roots, e.g. between 4 and 5.
с (ii)	$2x^{2} - 7x - 10 = 0$ $2\left(\left(x - \frac{7}{4}\right)^{2}\right) - \frac{129}{8} = 0$ $\left(x - \frac{7}{4}\right)^{2} = \frac{129}{16}$ $x - \frac{7}{4} = \pm \frac{\sqrt{129}}{4}$ $x = \frac{7}{4} \pm \sqrt{\frac{129}{16}}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: • Formula with some substitution • Equation rewritten with some transpose High Partial Credit: • $x - \frac{7}{4} = \pm \frac{\sqrt{129}}{4}$ or equivalent
	OR $2r^2 - 7r - 10 = 0$	
	$x = \frac{7 \pm \sqrt{49 + 80}}{4}$ $= \frac{7 \pm \sqrt{129}}{4}$ $x = \frac{7 \pm \sqrt{129}}{4}$ $x = \frac{7}{4} \pm \sqrt{\frac{129}{16}}$	