(a) Write the function $f(x)=2 x^{2}-7 x-10$, where $x \in \mathbb{R}$, in the form $a(x+h)^{2}+k$, where a, h, and $k \in \mathbb{Q}$.
(b) Hence, write the minimum point of f.
(c) (i) Explain why f must have two real roots.
(ii) Write the roots of $f(x)=0$ in the form $p \pm \sqrt{q}$, where p and $q \in \mathbb{Q}$.

Q1	Model Solution - 25 Marks	Marking Notes
(a)	$\begin{aligned} & 2\left(x^{2}-\frac{7}{2} x-5\right) \\ = & 2\left(\left(x-\frac{7}{4}\right)^{2}-\frac{129}{16}\right) \\ = & 2\left(\left(x-\frac{7}{4}\right)^{2}\right)-\frac{129}{8} \end{aligned}$	Scale 5D (0, 2, 3, 4, 5) Low Partial Credit: - $a=2$ identified explicitly or as factor Mid partial Credit: - Completed square High partial Credit: - h or k identified from work
(b)	$\left(\frac{7}{4}, \frac{-129}{8}\right)$	Scale 10B (0, 4, 10) Partial Credit: - One relevant co-ordinate identified

$\begin{array}{\|l\|l\|} \hline \text { (c) } \\ \text { (i) } \end{array}$	$f(x)$ has min point as $a>0$ y co-ordinate of $\min <0 \Rightarrow$ graph must cut x-axis twice hence two real roots. or $b^{2}-4 a c=49+80>0$ Therefore real roots	Scale 5B (0, 3, 5) Partial Credit: - Mention of $a>0$ - $b^{2}-4 a c$ - Identifies location of one or two roots, e.g. between 4 and 5.
c (ii)	$\begin{gathered} 2 x^{2}-7 x-10=0 \\ 2\left(\left(x-\frac{7}{4}\right)^{2}\right)-\frac{129}{8}=0 \\ \left(x-\frac{7}{4}\right)^{2}=\frac{129}{16} \\ x-\frac{7}{4}= \pm \frac{\sqrt{129}}{4} \\ x=\frac{7}{4} \pm \sqrt{\frac{129}{16}} \end{gathered}$ OR $\begin{aligned} & 2 x^{2}-7 x-10=0 \\ & x= \frac{7 \pm \sqrt{49+80}}{4} \\ &=\frac{7 \pm \sqrt{129}}{4} \\ & x=\frac{7}{4} \pm \sqrt{\frac{129}{16}} \end{aligned}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: - Formula with some substitution - Equation rewritten with some transpose High Partial Credit: - $x-\frac{7}{4}= \pm \frac{\sqrt{129}}{4}$ or equivalent

