Question 3

- (a) Differentiate $\frac{1}{3}x^2 x + 3$ from first principles with respect to x.
- (b) $f(x) = \ln(3x^2 + 2)$ and g(x) = x + 5, where $x \in \mathbb{R}$. Find the value of the derivative of f(g(x)) at $x = \frac{1}{4}$. Give your answer correct to 3 decimal places.

Q3	Model Solution – 25 Marks	Marking Notes
(a)	$f(x+h) = \frac{1}{3}(x+h)^2 - (x+h) + 3$ $f(x) = \frac{1}{3}x^2 - x + 3$ $f(x+h) - f(x) = \frac{2xh}{3} + \frac{h^2}{3} - h$ $\frac{f(x+h) - f(x)}{h} = \frac{2x}{3} + \frac{h}{3} - 1$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \frac{2x}{3} - 1$	Scale 20D (0, 5, 14, 17, 20) Low Partial Credit • any $f(x + h)$ Mid Partial Credit • $f(x + h) - f(x)$ with some correct work High Partial Credit • $\frac{\frac{1}{3}(x+h)^2 - (x+h) + 3 - (\frac{x^2}{3} - x + 3)}{h}$ simplified Notes: • omission of limit sign penalised once
		 only answer not from 1st Principles merits 0 marks
(b)	$\frac{d(fg(x))}{dx} = \frac{1}{(3(x+5)^2+2)}(6(x+5))$ $\frac{d(fg\left(\frac{1}{4}\right))}{dx} = \frac{6(\frac{21}{4})}{3(\frac{21}{4})^2+2} = \frac{504}{1355}$ $= 0.372$	Scale 5C (0, 3, 4, 5) Low Partial Credit: • Any correct differentiation • $fg(x)$ formulated High Partial Credit: • $\frac{d(fg(x))}{dx}$ found
	OR $f(x) = \ln(3x^{2} + 2)$ $g(x) = (x + 5)$ $f[g(x)] = \ln[3(x + 5)^{2} + 2]$ $= \ln(3x^{2} + 30x + 77)$ $f'(x) = \frac{6x + 30}{3x^{2} + 30x + 77}$ $x = \frac{1}{4}; f'(x) = \frac{31 \cdot 5}{84 \cdot 6875} = 0.3719$ $= 0.372$	Note: Work with $f(x) \times g(x)$ merits low partial credit at most