## **Question 5**

The function f is such that  $f(x) = 2x^3 + 5x^2 - 4x - 3$ , where  $x \in \mathbb{R}$ .

- (a) Show that x = -3 is a root of f(x) and find the other two roots.
- (b) Find the co-ordinates of the local maximum point **and** the local minimum point of the function *f*.
- (c) f(x) + a, where a is a constant, has only one real root. Find the range of possible values of a.



| Q5  | Model Solution – 25 Marks                                                  | Marking Notes                          |
|-----|----------------------------------------------------------------------------|----------------------------------------|
| (a) |                                                                            |                                        |
|     | $f(x) = 2x^3 + 5x^2 - 4x - 3$                                              | Scale 15C (0, 5, 10, 15)               |
|     | $f(-3) = 2(-3)^3 + 5(-3)^2 - 4(-3)$                                        | Low Partial Credit:                    |
|     |                                                                            | • Shows $f(-3) = 0$                    |
|     | - 3                                                                        |                                        |
|     | = -54 + 45 + 12 - 3                                                        | High Partial Credit:                   |
|     | f(-3) = 0                                                                  | • quadratic factor of $f(x)$ found     |
|     | $\Rightarrow$ (x + 3) is a factor                                          | Note:                                  |
|     | $2u^2 - 1$                                                                 | No remainder in division may be stated |
|     | $\frac{2x^2 - x - 1}{x + 3} \overline{\smash{\big)} 2x^3 + 5x^2 - 4x - 3}$ | as reason for $x = -3$ as root         |
|     |                                                                            |                                        |
|     | $\frac{2x^3+6x^2}{2x^2+6x^2}$                                              |                                        |
|     | $-x^2-4x$                                                                  |                                        |
|     | $\frac{-x^2-3x}{2}$                                                        |                                        |
|     | -x-3                                                                       |                                        |
|     | -x-3                                                                       |                                        |
|     | $f(x) = (x+3)(2x^2 - x - 1)$                                               |                                        |
|     | f(x) = (x+3)(2x+1)(x-1)                                                    |                                        |
|     | $x = -3$ $x = -\frac{1}{2}$ $x = 1$                                        |                                        |
|     |                                                                            |                                        |

| (b) | $y = 2x^{3} + 5x^{2} - 4x - 3$ $\frac{dy}{dx} = 6x^{2} + 10x - 4 = 0$ $3x^{2} + 5x - 2 = 0$ $(x + 2)(3x - 1) = 0$ $3x - 1 = 0  x + 2 = 0$ $x = \frac{1}{3}  x = -2$ $f\left(\frac{1}{3}\right) = \frac{-100}{27}  f(-2) = 9$ $Max = (-2, 9)  Min = \left(\frac{1}{3}, \frac{-100}{27}\right)$ | <ul> <li>Scale 5C (0, 3, 4, 5)</li> <li>Low Partial Credit:</li> <li> <ul> <li> <li> <sup>dy</sup>/<sub>dx</sub> found (Some correct differentiation)  </li> <li> High Partial Credit </li> <li>          roots and one y value found  </li> <li>          Note:         One of Max/Min must be identified for full credit  </li> </li></ul></li></ul> |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (c) | $a > \frac{100}{27}$ or $a < -9$                                                                                                                                                                                                                                                              | <ul> <li>Scale 5B (0, 3, 5)</li> <li>Partial Credit:</li> <li>one value identified</li> <li>no range identified (from 2 values)</li> </ul>                                                                                                                                                                                                             |