The function f is such that $f(x)=2 x^{3}+5 x^{2}-4 x-3$, where $x \in \mathbb{R}$.
(a) Show that $x=-3$ is a root of $f(x)$ and find the other two roots.
(b) Find the co-ordinates of the local maximum point and the local minimum point of the function f.
(c) $f(x)+a$, where a is a constant, has only one real root. Find the range of possible values of a.

Q5	Model Solution - 25 Marks	Marking Notes
	$\begin{gathered} f(x)=2 x^{3}+5 x^{2}-4 x-3 \\ f(-3)=2(-3)^{3}+5(-3)^{2}-4(-3) \\ -3 \\ =-54+45+12-3 \\ f(-3)=0 \\ \Rightarrow(x+3) \text { is a factor } \\ 2 x^{2}-x-1 \\ x + 3 \longdiv { 2 x ^ { 3 } + 5 x ^ { 2 } - 4 x - 3 } \\ \frac{2 x^{3}+6 x^{2}}{-x^{2}-4 x} \\ \frac{-x^{2}-3 x}{-x-3} \\ \frac{-x-3}{2} \\ f(x)=(x+3)\left(2 x^{2}-x-1\right) \\ f(x)=(x+3)(2 x+1)(x-1) \\ x=-3 \quad x=-\frac{1}{2} \quad x=1 \end{gathered}$	Scale 15C (0, 5, 10, 15) Low Partial Credit: - Shows $f(-3)=0$ High Partial Credit: - quadratic factor of $f(x)$ found Note: No remainder in division may be stated as reason for $x=-3$ as root

(b)	$\begin{gathered} y=2 x^{3}+5 x^{2}-4 x-3 \\ \frac{d y}{d x}=6 x^{2}+10 x-4=0 \\ 3 x^{2}+5 x-2=0 \\ (x+2)(3 x-1)=0 \\ 3 x-1=0 \quad x+2=0 \\ x=\frac{1}{3} \quad x=-2 \\ f\left(\frac{1}{3}\right)=\frac{-100}{27} \quad f(-2)=9 \\ \operatorname{Max}=(-2,9) \quad \text { Min }=\left(\frac{1}{3}, \frac{-100}{27}\right) \end{gathered}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: - $\frac{d y}{d x}$ found (Some correct differentiation) High Partial Credit - roots and one y value found Note: One of Max/Min must be identified for full credit
(c)	$a>\frac{100}{27}$ or $a<-9$	Scale 5B (0, 3, 5) Partial Credit: - one value identified - no range identified (from 2 values)

