The depth of water, in metres, at a certain point in a harbour varies with the tide and can be modelled by a function of the form

$$
f(t)=a+b \cos c t
$$

where t is the time in hours from the first high tide on a particular Saturday and a, b, and c are constants. (Note: $c t$ is expressed in radians.)

On that Saturday, the following were noted:

- The depth of the water in the harbour at high tide was 5.5 m
- The depth of the water in the harbour at low tide was 1.7 m
- High tide occurred at 02:00 and again at 14:34.
(a) Use the information you are given to add, as accurately as you can, labelled and scaled axes to the diagram below to show the graph of f over a portion of that Saturday. The point P should represent the depth of the water in the harbour at high tide on that Saturday morning.

(b) (i) Find the value of a and the value of b.
(ii) Show that $c=0 \cdot 5$, correct to 1 decimal place.
(c) Use the equation $f(t)=a+b \cos c t$ to find the times on that Saturday afternoon when the depth of the water in the harbour was exactly 5.2 m .
Give each answer correct to the nearest minute.

Q9		Marking Notes
$\begin{aligned} & \text { (b) } \\ & \text { (i) } \end{aligned}$	$\begin{gathered} f(t)=a+b \cos c t \\ \text { Range: }[(a+b),(a-b)] \\ a+b=5.5 \quad a-b=1.7 \\ a=3.6 \quad b=1.9 \end{gathered}$	Scale $10 C(0,5,8,10)$ Low Partial Credit: - one equation in a and b - Range in terms of a and b High Partial Credit: - a or b found Note: Accept correct answer without work
(b) (ii)	Time between two successive high tides is: $12 \frac{34}{60}$ hours $\begin{gathered} \text { period }=12 \frac{34}{60} \\ \text { period }=\frac{2 \pi}{c} \\ c=\frac{2 \pi}{12 \frac{34}{60}}=0.4999=0.5 \end{gathered}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: - Period identified or $\frac{2 \pi}{c}$ or 12.34 High Partial Credit: - equation in c with some substitution
(c)	$\begin{aligned} & 5 \cdot 2=a+b \cos c t \\ & 5 \cdot 2=3 \cdot 6+1 \cdot 9 \cos 0 \cdot 5 t \\ & 0 \cdot 5 t=\cos ^{-1} \frac{1 \cdot 6}{1 \cdot 9}=0 \cdot 569621319 \\ & 0 \cdot 5 t=0 \cdot 5696 \\ & t=1 \cdot 139 \text { hours } \end{aligned}$ (before and after high tide at 14:34) Time $=1$ hour 8 minutes Times: $\quad(14: 34) \pm 1$ hour 8 min $\Rightarrow 13: 26 \text { and } 15: 42$	Scale 5C (0, 3, 4, 5) Low Partial Credit: - equation with some substitution High Partial Credit: - solution for t Note: Low partial at most if formula not used

