Question 9

The depth of water, in metres, at a certain point in a harbour varies with the tide and can be modelled by a function of the form

$$f(t) = a + b\cos ct$$

where t is the time in hours from the first high tide on a particular Saturday and a, b, and c are constants. (Note: ct is expressed in radians.)

On that Saturday, the following were noted:

- The depth of the water in the harbour at high tide was 5.5 m
- The depth of the water in the harbour at low tide was 1.7 m
- High tide occurred at 02:00 and again at 14:34.
- (a) Use the information you are given to add, as accurately as you can, labelled and scaled axes to the diagram below to show the graph of f over a portion of that Saturday.
 The point P should represent the depth of the water in the harbour at high tide on that Saturday morning.

- (b) (i) Find the value of *a* and the value of *b*.
 - (ii) Show that c = 0.5, correct to 1 decimal place.
- (c) Use the equation $f(t) = a + b \cos ct$ to find the times on that Saturday afternoon when the depth of the water in the harbour was exactly 5.2 m. Give each answer correct to the nearest minute.

Q9		Marking Notes
(b) (i)	$f(t) = a + b \cos ct$ Range: $[(a + b), (a - b)]$ $a + b = 5 \cdot 5 a - b = 1 \cdot 7$ $a = 3 \cdot 6 b = 1 \cdot 9$	 Scale 10C (0, 5, 8, 10) Low Partial Credit: one equation in a and b Range in terms of a and b High Partial Credit: a or b found Note: Accept correct answer without work
(b) (ii)	Time between two successive high tides is: $12\frac{34}{60}$ hours period = $12\frac{34}{60}$ period = $\frac{2\pi}{c}$ $c = \frac{2\pi}{12\frac{34}{60}} = 0.4999 = 0.5$	Scale 5C (0, 3, 4, 5) Low Partial Credit: • Period identified or $\frac{2\pi}{c}$ or 12.34 High Partial Credit: • equation in c with some substitution
(c)	$5 \cdot 2 = a + b \cos ct$ $5 \cdot 2 = 3 \cdot 6 + 1 \cdot 9 \cos 0 \cdot 5t$ $0 \cdot 5t = \cos^{-1} \frac{1 \cdot 6}{1 \cdot 9} = 0 \cdot 569621319$ $0 \cdot 5t = 0 \cdot 5696$ $t = 1 \cdot 139 \text{ hours}$ (before and after high tide at 14:34) Time = 1 hour 8 minutes Times: (14:34) ± 1 hour 8 min $\Rightarrow 13:26 \text{ and } 15:42$	<pre>Scale 5C (0, 3, 4, 5) Low Partial Credit: equation with some substitution High Partial Credit: solution for t Note: Low partial at most if formula not used</pre>