Question 9

The depth of water, in metres, at a certain point in a harbour varies with the tide and can be modelled by a function of the form

$$f(t) = a + b\cos ct$$

where t is the time in hours from the first high tide on a particular Saturday and a, b, and c are constants. (Note: ct is expressed in radians.)

On that Saturday, the following were noted:

- The depth of the water in the harbour at high tide was 5.5 m
- The depth of the water in the harbour at low tide was 1.7 m
- High tide occurred at 02:00 and again at 14:34.
- (a) Use the information you are given to add, as accurately as you can, labelled and scaled axes to the diagram below to show the graph of f over a portion of that Saturday. The point P should represent the depth of the water in the harbour at high tide on that Saturday morning.

(b) (i) Find the value of *a* and the value of *b*.

L		 						 		 	 	 	 	 			 	 ——	
<u> </u>	 		<u> </u>	 	 	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 	 		 <u> </u>		<u> </u>	<u> </u>		 <u> </u>	

(ii) Show that c = 0.5, correct to 1 decimal place.

(c) Use the equation $f(t) = a + b \cos ct$ to find the times on that Saturday afternoon when the depth of the water in the harbour was exactly 5.2 m. Give each answer correct to the nearest minute.

previous	page	running