When Conor rings Ciara's house, the probability that Ciara answers the phone is $\frac{1}{5}$.
(a) Conor rings Ciara's house once every day for 7 consecutive days. Find the probability that she will answer the phone on the $2^{\text {nd }}, 4^{\text {th }}$, and $6^{\text {th }}$ days but not on the other days.
(b) Find the probability that she will answer the phone for the $4^{\text {th }}$ time on the $7^{\text {th }}$ day.
(c) Conor rings her house once every day for n days. Write, in terms of n, the probability that Ciara will answer the phone at least once.
(d) Find the minimum value of n for which the probability that Ciara will answer the phone at least once is greater than 99%.

Q1	Model Solution - 25 Marks	Marking Notes
(a)	$\begin{gathered} \frac{4}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{1}{5} \times \frac{4}{5}=\frac{256}{78125} \\ \text { or } \\ =0.0032768 \end{gathered}$	Scale 10C (0, 4, 5, 10) Low Partial Credit: - $\frac{4}{5}$ - $\left(\frac{1}{5}\right)^{3}$ High Partial Credit: - $\frac{4}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{1}{5} \times \frac{4}{5}$ in any order
(b)	$\begin{aligned} &\binom{6}{3}\left(\frac{1}{5}\right)^{3}\left(\frac{4}{5}\right)^{3}\left(\frac{1}{5}\right) \\ &= \frac{1280}{78125} \text { or } \frac{256}{15625} \\ & \text { or } 0.016384 \end{aligned}$	Scale 5D (0, 2, 3, 4, 5) Low Partial Credit: - $\binom{6}{3}$ or $\left(\frac{1}{5}\right)^{3}$ or $\left(\frac{4}{5}\right)^{3}$ - $\frac{1}{5}$ for last day Mid Partial Credit: - $\binom{6}{3}\left(\frac{1}{5}\right)^{3}\left(\frac{4}{5}\right)^{3}$ and stops or continues - $\binom{7}{4}\left(\frac{1}{5}\right)^{4}\left(\frac{4}{5}\right)^{3}$ and continues High Partial Credit: - $\binom{6}{3}\left(\frac{1}{5}\right)^{3}\left(\frac{4}{5}\right)^{3}\left(\frac{1}{5}\right)$

(c)	$1-\left(\frac{4}{5}\right)^{n}$	Scale 5B (0, 3, 5) Partial Credit: - 1 or $\left(\frac{4}{5}\right)^{n}$ - any correct term from the expansion
(d)	$\begin{array}{r} 1-\left(\frac{4}{5}\right)^{n}>0.99 \\ \left(\frac{4}{5}\right)^{n}<0.01 \\ \left(\frac{4}{5}\right)^{20.6377} \approx 0.01000000517 \end{array}$ $n=21$	Scale 5C (0, 2, 4, 5) Low Partial Credit: - Ans (c) >0.99 High Partial Credit: - viable solution to inequality - $n=20 \cdot 6377$ and stops

