Question 1

When Conor rings Ciara's house, the probability that Ciara answers the phone is $\frac{1}{5}$.

- (a) Conor rings Ciara's house once every day for 7 consecutive days. Find the probability that she will answer the phone on the 2nd, 4th, and 6th days but not on the other days.
- (b) Find the probability that she will answer the phone for the 4th time on the 7th day.
- (c) Conor rings her house once every day for *n* days. Write, in terms of *n*, the probability that Ciara will answer the phone at least once.
- (d) Find the minimum value of *n* for which the probability that Ciara will answer the phone at least once is greater than 99%.

Q1	Model Solution – 25 Marks	Marking Notes
(a)	$\frac{4}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{1}{5} \times \frac{4}{5} = \frac{256}{78125}$ or = 0.0032768	Scale 10C (0, 4, 5, 10) Low Partial Credit: • $\frac{4}{5}$ • $(\frac{1}{5})^3$ High Partial Credit: • $\frac{4}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{1}{5} \times \frac{4}{5}$ in any order
(b)	$\binom{6}{3} \left(\frac{1}{5}\right)^3 \left(\frac{4}{5}\right)^3 \left(\frac{1}{5}\right)$ $= \frac{1280}{78125} \text{ or } \frac{256}{15625}$ or 0.016384	Scale 5D (0, 2, 3, 4, 5) Low Partial Credit: • $\binom{6}{3}$ or $\left(\frac{1}{5}\right)^3$ or $\left(\frac{4}{5}\right)^3$ • $\frac{1}{5}$ for last day Mid Partial Credit: • $\binom{6}{3}\left(\frac{1}{5}\right)^3\left(\frac{4}{5}\right)^3$ and stops or continues • $\binom{7}{4}\left(\frac{1}{5}\right)^4\left(\frac{4}{5}\right)^3$ and continues High Partial Credit: • $\binom{6}{3}\left(\frac{1}{5}\right)^3\left(\frac{4}{5}\right)^3\left(\frac{1}{5}\right)$

(c)	$1-\left(\frac{4}{5}\right)^n$	Scale 5B (0, 3, 5) Partial Credit: • 1 or $\left(\frac{4}{5}\right)^n$ • any correct term from the expansion
(d)	$1 - \left(\frac{4}{5}\right)^n > 0.99$ $\left(\frac{4}{5}\right)^n < 0.01$ $\left(\frac{4}{5}\right)^{20.6377} \approx 0.01000000517$ $n = 21$	Scale 5C (0, 2, 4, 5) Low Partial Credit: • Ans (c) > 0.99 High Partial Credit: • viable solution to inequality • $n = 20.6377$ and stops