Question 3

ABC is a triangle where the co-ordinates of A and C are (0, 6) and (4, 2) respectively. $G\left(\frac{2}{3}, \frac{4}{3}\right)$ is the centroid of the triangle ABC. AG intersects BC at the point P.

|AG| : |GP| = 2 : 1.

- (a) Find the co-ordinates of *P*.
- (b) Find the co-ordinates of *B*.
- (c) Prove that *C* is the orthocentre of the triangle *ABC*.

Q3	Model Solution – 25 Marks	Marking Notes
(a)	$A(0,6) \to G\left(\frac{2}{3}, \frac{4}{3}\right)$ $\to P\left(\frac{2}{3} + \frac{1}{2}\left(\frac{2}{3}\right), \frac{4}{3} + \frac{1}{2}\left(\frac{-14}{3}\right)\right)$ $= \left(\frac{3}{3}, -\frac{3}{3}\right)$ P = (1, -1) or P = (x, y) $\left(\frac{2x + 1(0)}{3}, \frac{2y + 6}{3}\right) = \left(\frac{2}{3}, \frac{4}{3}\right)$ x = 1, y = -1 or P = (x, y) $\left(\frac{3(\frac{2}{3}) - 1(0)}{3 - 1}, \frac{3\left(\frac{4}{3}\right) - 1(6)}{3 - 1}\right)$ $= \left(\frac{2}{2}, \frac{-2}{2}\right) = (1, -1)$	Scale 10C (0, 4, 5, 10) Low Partial Credit: • $P\left(\frac{4}{3}, -\frac{10}{3}\right)$ or equivalent, i.e ratio 1:1 • $\frac{2}{3}$ or $\frac{1}{3}$ identified as part of change in x ordinate • $-\frac{14}{3}$ or $-\frac{7}{3}$ identified as part of change in y ordinate • Ratio formula with some substitution <i>High Partial Credit:</i> • one relevant co-ordinate of P found
(b)	$C(4,2) \to P(1, -1) \to B(1-3, -1-3)$ = (-2, -4) $B(x,y) \to \left(\frac{4+x}{2}, \frac{2+y}{2}\right) = (1, -1)$ x = -2, y = -4 B = (-2, -4)	 Scale 5C (0, 2, 4, 5) Low Partial Credit: P as mid-point of BC High Partial Credit: one relevant co-ordinate of B found Note: Accept (-2, -4) without work Accept correct graphical solution

$AC \perp BC$ $AC = \frac{2-6}{4-0} = -1$ $BC = \frac{2+4}{4+2} = 1$ $-1 \times 1 = -1$ $BC = respendicular$ Or $Slope AB = 5.$ $Altitude from C : y - 2 = -\frac{1}{5}(x - 4)$ $\rightarrow x + 5y = 14 \dots (i).$ $Slope AC = -1.$ $Altitude from B :$ $y + 4 = 1(x + 2)$ $\rightarrow x - y = 2 \dots (ii)$ $\rightarrow Solving (i)and (ii)$ $x = 4$ $y = 2$ $Scale 10C (0, 4, 5, 10)$ $Low Partial Credit:$ $\cdot Identifies significance of right-angled triangle$ $\cdot one equation of perpendicular from vertex to opposite side found$ $High Partial Credit:$ $\cdot slope of AC and slope of BC found but no conclusion$ $\cdot two equations of perpendiculars from vertex to opposite side found$	(c)		
		$AC \perp BC$ $AC = \frac{2-6}{4-0} = -1$ $BC = \frac{2+4}{4+2} = 1$ $-1 \times 1 = -1$ Ines are perpendicular or Slope AB = 5. Altitude from C: $y - 2 = -\frac{1}{5}(x - 4)$ $\rightarrow x + 5y = 14 \dots (i).$ Slope AC = -1. Altitude from B: $y + 4 = 1(x + 2)$ $\rightarrow x - y = 2 \dots (i)$ $\rightarrow Solving (i) and (ii)$ $x = 4$ $y = 2$	 Scale 10C (0, 4, 5, 10) Low Partial Credit: Identifies significance of right-angled triangle one equation of perpendicular from vertex to opposite side found High Partial Credit: slope of AC and slope of BC found but no conclusion two equations of perpendiculars from vertex to opposite side found