Question 3

$A B C$ is a triangle where the co-ordinates of A and C are $(0,6)$ and $(4,2)$ respectively.
$G\left(\frac{2}{3}, \frac{4}{3}\right)$ is the centroid of the triangle $A B C$.
$A G$ intersects $B C$ at the point P.
$|A G|:|G P|=2: 1$.
(a) Find the co-ordinates of P.
(b) Find the co-ordinates of B.
(c) Prove that C is the orthocentre of the triangle $A B C$.

Q3	Model Solution - 25 Marks	Marking Notes
(a)	$\begin{gathered} A(0,6) \rightarrow G\left(\frac{2}{3}, \frac{4}{3}\right) \\ \rightarrow P\left(\frac{2}{3}+\frac{1}{2}\left(\frac{2}{3}\right), \frac{4}{3}+\frac{1}{2}\left(\frac{-14}{3}\right)\right) \\ =\left(\frac{3}{3},-\frac{3}{3}\right) \\ P=(1,-1) \end{gathered}$ or $\begin{gathered} P=(x, y) \\ \left(\frac{2 x+1(0)}{3}, \frac{2 y+6}{3}\right)=\left(\frac{2}{3}, \frac{4}{3}\right) \\ x=1, \quad y=-1 \end{gathered}$ or $\begin{aligned} P & =(x, y) \\ \left(\frac{3\left(\frac{2}{3}\right)-1(0)}{3-1}\right. & \left., \frac{3\left(\frac{4}{3}\right)-1(6)}{3-1}\right) \\ & =\left(\frac{2}{2}, \frac{-2}{2}\right)=(1,-1) \end{aligned}$	Scale 10C (0, 4, 5, 10) Low Partial Credit: - $P\left(\frac{4}{3},-\frac{10}{3}\right)$ or equivalent, i.e ratio 1:1 - $\frac{2}{3}$ or $\frac{1}{3}$ identified as part of change in x ordinate - $-\frac{14}{3}$ or $-\frac{7}{3}$ identified as part of change in y ordinate - Ratio formula with some substitution High Partial Credit: - one relevant co-ordinate of P found
(b)	$\left.\begin{array}{c} C(4,2) \rightarrow P(1,-1) \rightarrow B(1-3,-1-3) \\ =(-2,-4) \\ B(x, y) \rightarrow\left(\frac{4+x}{2}, \frac{2+y}{2}\right)=(1,-1) \\ x=-2, \quad y=-4 \end{array}\right] \begin{gathered} B=(-2,-4) \end{gathered}$	Scale 5C (0, 2, 4, 5) Low Partial Credit: - P as mid-point of $B C$ High Partial Credit: - one relevant co-ordinate of B found Note: Accept $(-2,-4)$ without work Accept correct graphical solution

(c)	$\begin{gathered} A C \perp B C \\ A C=\frac{2-6}{4-0}=-1 \\ B C=\frac{2+4}{4+2}=1 \\ -1 \times 1=-1 \end{gathered}$ lines are perpendicular or Slope AB $=5$. Altitude from C : $y-2=-\frac{1}{5}(x-4)$ $\begin{equation*} \rightarrow x+5 y=14 \tag{i} \end{equation*}$ Slope AC $=-1$. Altitude from B: $\begin{gathered} y+4=1(x+2) \\ \rightarrow x-y=2 \ldots \ldots \text { (ii) } \\ \rightarrow \text { Solving (i)and (ii) } \\ x=4 \\ y=2 \end{gathered}$	Scale 10C (0, 4, 5, 10) Low Partial Credit: - Identifies significance of right-angled triangle - one equation of perpendicular from vertex to opposite side found High Partial Credit: - slope of $A C$ and slope of $B C$ found but no conclusion - two equations of perpendiculars from vertex to opposite side found

