$A(0,0), B(6 \cdot 5,0)$ and $C(10,7)$ are three points on a circle.
(a) Find the equation of the circle.
(b) Find $|\angle B C A|$. Give your answer in degrees, correct to 2 decimal places.

Q4	Model Solution - 25 Marks	Marking Notes
(a)	$\begin{gathered} x^{2}+y^{2}+2 g x+2 f y+c=0 \\ (0,0) \Rightarrow 0+0+0+0+c=0 \\ \Rightarrow c=0 \\ (6 \cdot 5,0) \Rightarrow 42 \cdot 25+0+13 \mathrm{~g}+0+0=0 \\ \Rightarrow \mathrm{~g}=-3 \cdot 25 \\ (10,7) \Rightarrow 100+49+2(-3 \cdot 25)(10) \\ +2 f(7)=0 \\ 14 f=-84 \\ f=-6 \\ x^{2}+y^{2}-6 \cdot 5 x-12 y=0 \end{gathered}$ or \perp Bisector of $[A B]$ $\begin{equation*} x=\frac{13}{4} \tag{1} \end{equation*}$ \perp Bisector of $[A C]$ Midpoint $[A C]=\left(5, \frac{7}{2}\right)$, Slope $[A C]=\frac{7}{10}$ Eq. of mediator [AC] $\begin{gather*} y-\frac{7}{2}=-\frac{10}{7}(x-5) \\ 10 x+7 y=\frac{149}{2} \tag{2}\\ r=\sqrt{\left(\frac{13}{4}-0\right)^{2}+(6-0)^{2}}=\frac{\sqrt{745}}{4} \\ \left(x-\frac{13}{4}\right)^{2}+(y-6)^{2}=\frac{745}{16} \end{gather*}$ or $(-g,-f) \in$ mediator $(0,0)$ and $(6 \cdot 5,0)$. $\therefore-g=3 \cdot 25$ Centre ($3 \cdot 25,-f$). Since $(0,0) \in$ of circle $\therefore c=0$. Equation of circle $x^{2}+y^{2}-6 \cdot 5 x+2 f y+0=0$ $(10,7)$ on circle: $100+49-65+14 f=0$ $\begin{gathered} 84+14 f=0 \\ f=-6 \\ x^{2}+y^{2}-6 \cdot 5 x-12 y=0 \end{gathered}$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: - $c=0$ - One relevant equation in g and/or f Mid Partial Credit: - 2 of g, f, c found High Partial Credit: - g, f, and c found or equivalent Low Partial Credit: - Effort at formulating equation of $1 \perp$ bisector Mid Partial Credit: - Point t of intersection of $2 \perp$ bisectors found High Partial Credit: - Point of intersection of $2 \perp$ bisectors and radius Low Partial Credit: - $c=0$ - One point substituted into equation of circle - Midpoint $(0,0)$ and $(6 \cdot 5,0)$ formulated Mid Partial Credit: - 2 of g, f, c found High Partial Credit: - g, f, and c found or equivalent

(b)	Slope $A C=\frac{7}{10}$ Slope $C B=\frac{0-7}{6 \cdot 5-10}=2$ $\begin{gathered} \tan \theta= \pm \frac{\frac{7}{10}-2}{1+\frac{7}{5}}= \pm \frac{-13}{24} \\ \theta=28.44 \end{gathered}$ or Cosine rule $\begin{aligned} & \|A B\|^{2}=42 \cdot 25, \\ & \|A C\|^{2}=149 \\ & \|B C\|^{2}=61 \cdot 25 \end{aligned}$ $\begin{gathered} \cos \theta=\frac{149+61.25-42.25}{2 \times \sqrt{149} \times \sqrt{61.25}}=0.8793 \\ \Rightarrow \theta=28.44 \end{gathered}$	Scale 15C (0, 6, 9, 15) Low Partial Credit: - one relevant slope High Partial Credit: - $\tan \theta$ fully substituted Low Partial Credit: - one relevant length High Partial Credit: - $\cos \theta$ fully substituted

