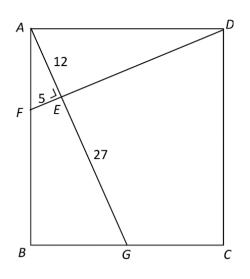
Question 5

ABCD is a rectangle.

 $F \in [AB], G \in [BC], [FD] \cap [AG] = \{E\}, \text{ and } FD \perp AG.$ |AE| = 12 cm, |EG| = 27 cm, and |FE| = 5 cm.

- (a) Prove that $\triangle AFE$ and $\triangle DAE$ are similar (equiangular).
- (b) Find |*AD*|.
- (c) $\triangle AFE$ and $\triangle AGB$ are similar. Show that |AB| = 36 cm.
- (d) Find the area of the quadrilateral *GCDE*.



Q5	Model Solution – 25 Marks	Marking Notes
(a)	Proof: $ < AEF = < AED \dots right angles$ $ < FAE + < EAD = 90^{\circ}$ $ < EAD + < ADE = 90^{\circ}$ $remaining angles in \Delta AED$ $\therefore < FAE = < ADE $ or $\therefore < AFE = < DAE $ $\therefore \Delta AFE and \Delta DAE equiangular$ $\therefore similar$	 Scale 10C (0, 4, 5, 10) Low Partial Credit: Identifies one angle of same size in each triangle High Partial Credit: Identifies second angle of same size in each triangle Implies triangles are similar without justifying < FAE = < ADE
(b)	$\frac{ AD }{13} = \frac{12}{5}$ $ AD = 31.2 \text{ cm}$	Scale 5C (0, 2, 4, 5) Low Partial Credit: • $ AF = 13$ • One set of corresponding sides identified, e.g. $\frac{ AD }{13}$ or $\frac{12}{5}$ High Partial Credit: • $\frac{ AD }{13} = \frac{12}{5}$ or equivalent
(c)	$\frac{39}{13} = \frac{ AB }{12}$ $ AB = 3 \times 12 = 36 \text{ cm}$	Scale 5C (0, 2, 4, 5) Low Partial Credit: • $ AG = 39$ • One set of corresponding sides identified High Partial Credit: • $\frac{39}{13} = \frac{ AB }{12}$ or equivalent

(d)
Area = Area*ABCD* – Area
$$\Delta AFD$$

 $-\Delta AreaABG + Area ΔAFE
= (31·2)(36) $-\frac{1}{2}(31\cdot2)(13)$
 $-\frac{1}{2}(36)(15) + \frac{1}{2}(5)(12)$
= 680·4 cm²
or (method 2)
Area = Area*ABCD* – Area ΔABG – Area ΔAED
= (31·2)(36) $-\frac{1}{2}(36)(15)$
 $-\frac{1}{2}(12)\sqrt{31\cdot2^2 - 12^2}$
= 1123·2 – 270 – 172·8
= 680·4 cm²
or (method 3)
Area = Area ΔDCG + Area ΔGED
= $\frac{1}{2}(36)(16\cdot2) + \frac{1}{2}(27)\sqrt{31\cdot2^2 - 12^2}$
= 291·6 + 388·8
= 680·4 cm²$