(a) Take the earth as a sphere with radius 6371 km . Jack is standing on the Cliffs of Moher at the point J which is 214 metres above sea level. He is looking out to sea at a point H on the horizon. Taking A as the centre of the earth, find $|J H|$, the distance from Jack to the horizon. Give your answer correct to the nearest km.

(b) The Cliffs of Moher, at point C, are at latitude 53° north of the equator.
On the diagram, s_{1} represents the circle that is at latitude 53°.
s_{2} represents the equator (which is at latitude 0°).
A is the centre of the earth.
s_{1} and s_{2} are on parallel planes.
Find the length of the circle s_{1}.
Give your answer correct to the nearest km.

Q6	Model Solution - 25 Marks	Marking Notes	
(a)	$\begin{gathered} \|A J\|=6371+0 \cdot 214 \\ \|J H\|^{2}=\|A J\|^{2}-\|A H\|^{2} \\ \|J H\|=\sqrt{(6371+0 \cdot 214)^{2}-6371^{2}} \\ =52 \cdot 21=52 \end{gathered}$	Scale 15C (0, 6, 9, 15) Low Partial Credit: - \|AJ	formulated - indication of Pythagoras High Partial Credit: - Pythagoras fully substituted
(b)	$\cos 53^{\circ}=\frac{r}{6371} \text { or } \sin 37^{\circ}=\frac{r}{6371}$ $\begin{gathered} r_{S_{1}}=6371 \times \cos 53=3834 \cdot 1635 \\ l_{S_{1}}=2 \pi r_{S_{1}}=2 \pi(3834 \cdot 1635)=24091 \end{gathered}$	Scale 10C (0, 4, 5, 10) Low Partial Credit: - $\cos 53^{\circ}$ or $\sin 47^{\circ}$ High Partial Credit: - radius of s_{1} calculated and stops - length of circle formula fully substituted	

