Question 9

(50 marks)

Conor's property is bounded by the straight bank of a river, as shown in **Figure 1** above. T is the base of a vertical tree that is growing near the opposite bank of the river. |TE| is the height of the tree, as shown in **Figure 2** above.

From the point *C*, which is due west of the tree, the angle of elevation of *E*, the top of the tree, is 60° . From the point *D*, which is 15 m due north of *C*, the angle of elevation of *E* is 30° (see **Figure 2**). The land on both sides of the river is flat and at the same level.

- (a) Use triangle *ECT*, to express |TE| in the form $\sqrt{a}|CT|$ metres, where $a \in \mathbb{N}$.
- **(b)** Show that |TE| may also be expressed as $\sqrt{\frac{225+|CT|^2}{3}}$ metres.
- (c) Hence find |CT|, the distance from the base of the tree to the bank of the river at Conor's side. Give your answer correct to 1 decimal place.
- (d) Find |TE|, the height of the tree. Give your answer correct to 1 decimal place.
- (e) The tree falls across the river and hits the bank at Conor's side at the point *F*. Find the maximum size of the angle *FTC*. Give your answer in degrees, correct to 1 decimal place.
- (f) If the tree was equally likely to fall in any direction, find the probability that it would hit the bank at Conor's side, when it falls.Give your answer as a percentage, correct to 1 decimal place.

Q9	Model Solution – 50 Marks	Marking Notes
(a)	$\tan 60^{\circ} = \frac{ TE }{ CT }$ $\sqrt{3} CT = TE $	 Scale 10B (0, 5, 10) Partial Credit: tan 60° effort to express TE in terms of another side of the triangle
(b)	$\tan 30^\circ = \frac{ TE }{ DT }$ $ TE = DT \frac{1}{\sqrt{3}}$ $ TE = \frac{\sqrt{225 + CT^2 }}{\sqrt{3}}$ $ TE = \sqrt{\frac{225 + CT ^2}{3}}$	Scale 5C (0, 2, 4, 5) Low Partial Credit: • tan 30° • Use of Pythagoras for $ DT $ • Effort at expressing $ DT $ in terms of another side of ΔDET High Partial Credit: • $ TE = DT \frac{1}{\sqrt{3}}$
(c)	$\sqrt{3} CT = \sqrt{\frac{225 + CT ^2}{3}}$ $ CT = \sqrt{\frac{225}{8}}$ $= 5.3033 \text{ m}$ $= 5.3 \text{ m}$	 Scale 10C (0, 4, 5, 10) Low Partial Credit: equates both expressions High Partial Credit: Isolate CT in equation

Q9		Marking Notes
(d)	$ TE = \sqrt{3} CT = 9.17986 \text{ m} = 9.2 \text{ m}$	 Scale 10B (0, 5, 10) Low Partial Credit Substitution into formula for TE
(e)	$\cos \theta = \frac{ CT }{ FT } = \frac{ CT }{ TE } = \frac{ CT }{\sqrt{3} CT } = \frac{1}{\sqrt{3}}$ $\theta = 54.7$	 Scale 5C (0, 2, 4, 5) Low Partial Credit: Some relevant substitution for cos θ High Partial Credit: Formula for cos θ substituted in terms of CT
(f)	$P = \frac{(54.7)(2)}{360} = 0.3038 = 30.4$	Scale 10C (0, 4, 5, 10) Low Partial Credit: • (Answer to part (e))×2 • 360° High Partial Credit: • P fully formulated