(25 marks)

Question 1

(a) Solve the simultaneous equations.

$$2x + 3y - z = -43x + 2y + 2z = 14x - 3z = -13$$

(b) Solve the inequality
$$\frac{2x-3}{x+2} \ge 3$$
, where $x \in \mathbb{R}$ and $x \neq -2$.

Q1	Model Solution – 25 Marks	Marking Notes
(a)		
	(i) $2x + 3y - z = -4$ × (2) (ii) $3x + 2y + 2z = 14$ × (-3) 4x + 6y - 2z = -8 -9x - 6y - 6z = -42 -5x - 8z = -50 (iii) $x - 3z = -13$ × (5) -5x - 8z = -50 5x - 15z = -65 -23z = -115 z = 5 $\Rightarrow x = 2$ $\Rightarrow y = -1$ {2, -1, 5}	 Scale 15D (0, 5, 7, 11, 15) Low Partial Credit: Matches coefficient of 1 variable in 2 equations Writes x in terms of z in eq (iii) Mid Partial Credit: 1 unknown found with errors Eliminates one unknown 1 unknown found and stops High Partial Credit: 2 unknowns found
(b)	$\frac{2x-3}{x+2} \ge 3 \qquad \times (x+2)^2$ $(2x-3)(x+2) \ge 3(x+2)^2$ $2x^2 + x - 6 \ge 3x^2 + 12x + 12$ $x^2 + 11x + 18 \le 0$ $(x+2)(x+9) \le 0$ $-9 \le x < -2$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit Use of $(x + 2)^2$ Relevant work but with linear inequality Squares both sides with some subsequent work (low partial credit at most) Mid Partial Credit: Quadratic inequality involving 0 High Partial Credit Roots of quadratic found Note: Accept $-9 \le x \le -2$