Question 1

(a) Solve the simultaneous equations.

$$
\begin{aligned}
2 x+3 y-z & =-4 \\
3 x+2 y+2 z & =14 \\
x-3 z & =-13
\end{aligned}
$$

(b) Solve the inequality $\frac{2 x-3}{x+2} \geq 3$, where $x \in \mathbb{R}$ and $x \neq-2$.

Q1	Model Solution - 25 Marks	Marking Notes
(a)	(i) $2 x+3 y-z=-4$ $\times(2)$ (ii) $3 x+2 y+2 z=14$ $\times(-3)$	Scale 15D (0, 5, 7, 11, 15) Low Partial Credit: Matches coefficient of 1 variable in 2 equations Writes x in terms of z in eq (iii) Mid Partial Credit: 1 unknown found with errors Eliminates one unknown 1 unknown found and stops High Partial Credit: 2 unknowns found
(b)	$\begin{aligned} & \frac{2 x-3}{x+2} \geq 3 \\ & (2 x-3)(x+2) \geq 3(x+2)^{2} \\ & 2 x^{2}+x-6 \geq 3 x^{2}+12 x+12 \\ & x^{2}+11 x+18 \leq 0 \\ & (x+2)(x+9) \leq 0 \\ & -9 \leq x<-2 \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit Use of $(x+2)^{2}$ Relevant work but with linear inequality Squares both sides with some subsequent work (low partial credit at most) Mid Partial Credit: Quadratic inequality involving 0 High Partial Credit Roots of quadratic found Note: Accept $-9 \leq x \leq-2$

