(a) The first three terms of a geometric series are $x^{2}, 5 x-8$, and $x+8$, where $x \in \mathbb{R}$. Use the common ratio to show that $x^{3}-17 x^{2}+80 x-64=0$.
(b) If $f(x)=x^{3}-17 x^{2}+80 x-64, x \in \mathbb{R}$, show that $f(1)=0$, and find another value of x for which $f(x)=0$.
(c) In the case of one of the values of x from part (b), the terms in part (a) will generate a geometric series with a finite sum to infinity. Find this value of x and hence find the sum to infinity.

Q2	Model Solution - 25 Marks	Marking Notes
	$\begin{aligned} & \frac{5 x-8}{x^{2}}=\frac{x+8}{5 x-8} \\ & \quad(5 x-8)^{2}=x^{2}(x+8) \\ & 25 x^{2}-80 x+64=x^{3}+8 x^{2} \\ & \quad x^{3}-17 x^{2}+80 x-64=0 \end{aligned}$	Scale $10 \mathrm{C}(0,4,8,10)$ Low Partial Credit: $\frac{5 x-8}{x^{2}} \text { or } \frac{x+8}{5 x-8}$ Some effort at finding r in a geometric sequence (must use at least one of the terms) $r=\frac{T_{n}}{T_{n-1}}$ or similar High Partial Credit: $\begin{aligned} & \frac{5 x-8}{x^{2}}=\frac{x+8}{5 x-8} \\ & (5 x-8)^{2} \text { and } x^{2}(x+8) \end{aligned}$ 0 credit: Treats as an arithmetic sequence
(b)	$\begin{gathered} f(x)=x^{3}-17 x^{2}+80 x-64 \\ f(1)=(1)^{3}-17(1)^{2}+80(1)-64=0 \\ \Rightarrow(x-1) \text { is a factor } \\ x^{3}-17 x^{2}+80 x-64=0 \\ x^{2}(x-1)-16 x(x-1)+64(x-1) \\ x^{2}-16 x+64=0 \\ (x-8)(x-8)=0 \\ x=8 \end{gathered}$	Scale $10 \mathrm{C}(0,4,8,10)$ Low Partial Credit: Shows $f(1)=0$ Any correct substitution High Partial Credit: Quotient in quadratic form found Accept $x=8$ without work if $f(1)=0$ has been shown

(c)	$\begin{aligned} & \underline{x=1} 1^{2}, \quad 5(1)-8,1+8 \\ & 1,-3,9 \text { which doesn't have } \\ & \text { a sum to infinity }(\|r\|>1) \\ & \underline{x=8} 8^{2}, \quad 5(8)-8, \quad 8+8 \\ & 64,32,16 \ldots a=64 \text { and } r=\frac{1}{2} \\ & S_{\infty}=\frac{a}{1-r}=\frac{64}{1-\frac{1}{2}}=\frac{64}{\frac{1}{2}}=128 \end{aligned}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: Substitution used to identify $x=8$ as the required value Substitution used to exclude $x=1$ as the required value Finds $\frac{a}{1-r}$ for $x=1$ $S_{\infty}=\frac{x^{2}}{1-\frac{5 x-8}{x^{2}}}$ Relevant substitution into correct formula High Partial Credit: GP identified (a and r) If the candidate works with both $x=1$ and $x=8$ but fails to eliminate $x=1$ or chooses the incorrect answer Note: if $\|r\|>1$ then Low Partial Credit at most

