Question 2

- (a) The first three terms of a geometric series are x^2 , 5x 8, and x + 8, where $x \in \mathbb{R}$. Use the common ratio to show that $x^3 - 17x^2 + 80x - 64 = 0$.
- (b) If $f(x) = x^3 17x^2 + 80x 64$, $x \in \mathbb{R}$, show that f(1) = 0, and find another value of x for which f(x) = 0.
- (c) In the case of one of the values of x from part (b), the terms in part (a) will generate a geometric series with a finite sum to infinity.Find this value of x and hence find the sum to infinity.

Q2	Model Solution – 25 Marks	Marking Notes
(a)		
	$\frac{5x-8}{x^2} = \frac{x+8}{5x-8}$ $(5x-8)^2 = x^2(x+8)$ $25x^2 - 80x + 64 = x^3 + 8x^2$ $x^3 - 17x^2 + 80x - 64 = 0$	Scale 10C (0, 4, 8, 10) Low Partial Credit: $\frac{5x-8}{x^2}$ or $\frac{x+8}{5x-8}$ Some effort at finding r in a geometric sequence (must use at least one of the terms) $r = \frac{T_n}{T_{n-1}}$ or similar High Partial Credit: $\frac{5x-8}{x^2} = \frac{x+8}{5x-8}$ $(5x-8)^2$ and $x^2(x+8)$ O credit: Treats as an arithmetic sequence
(b)	$f(x) = x^{3} - 17x^{2} + 80x - 64$ $f(1) = (1)^{3} - 17(1)^{2} + 80(1) - 64 = 0$ $\Rightarrow (x - 1) \text{ is a factor}$ $x^{3} - 17x^{2} + 80x - 64 = 0$ $x^{2}(x - 1) - 16x(x - 1) + 64(x - 1)$ $x^{2} - 16x + 64 = 0$ (x - 8)(x - 8) = 0 x = 8	Scale 10C (0, 4, 8, 10) Low Partial Credit: Shows $f(1) = 0$ Any correct substitution High Partial Credit: Quotient in quadratic form found Accept $x = 8$ without work if $f(1) = 0$ has been shown

(c)

$$\frac{x=1}{1^2, \quad 5(1)-8, \ 1+8}$$

$$1,-3, \ 9 \text{ which doesn't have}$$

$$a \text{ sum to infinity } (|r| > 1)$$

$$\frac{x=8}{8^2, \quad 5(8)-8, \quad 8+8}$$

$$64,32,16 \dots \ a=64 \text{ and } r = \frac{1}{2}$$

$$S_{\infty} = \frac{x^2}{1-\frac{5x-8}{x^2}}$$
Relevant substitution into correct formula
$$High \ Partial \ Credit:$$
GP identified $(a \text{ and } r)$
If the candidate works with both $x = 1$ and $x = 8$ but fails to eliminate $x = 1$ or chooses the incorrect answer
Note: if $|r| > 1$ then Low Partial Credit at most