Question 3

(a) Let $h(x)=\cos (2 x)$, where $x \in \mathbb{R}$.

A tangent is drawn to the graph of $h(x)$ at the point where $x=\frac{\pi}{3}$.
Find the angle that this tangent makes with the positive sense of the x-axis.
(b) Find the average value of $h(x)$ over the interval $0 \leq x \leq \frac{\pi}{4}, x \in \mathbb{R}$. Give your answer in terms of π.

Q3	Model Solution-25 Marks	Marking Notes
(a)	$\begin{aligned} & h^{\prime}(x)=-2 \sin (2 x) \\ & \text { At } x=\frac{\pi}{3}: h^{\prime}\left(\frac{\pi}{3}\right)=-2 \sin \left(\frac{2 \pi}{3}\right) \\ & \quad=-2\left(\frac{\sqrt{3}}{2}\right)=-\sqrt{3} \\ & \tan \theta=-\sqrt{3} \\ & \theta=120^{\circ} \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: Differentiation indicated Use of 2 Mid Partial Credit: Derivative found High Partial Credit: $\tan \theta=$ evaluated derivative $\theta=-60^{\circ}$ Note: Must use differentiation to gain any credit Note: If integration symbol appears then 0 credit
(b)	$\begin{aligned} & \frac{1}{\frac{\pi}{4}-0} \int_{0}^{\frac{\pi}{4}} \cos (2 x) d x \\ & =\frac{4}{\pi}\left(\frac{\sin (2 x)}{2}\right)_{0}^{\frac{\pi}{4}} \\ & =\frac{4}{\pi}\left(\frac{\sin \frac{\pi}{2}}{2}-\frac{\sin 0}{2}\right) \\ & =\frac{4}{\pi}\left(\frac{1}{2}\right)=\frac{2}{\pi} \end{aligned}$	Scale 15D (0, 5, 7, 11, 15) Low Partial Credit: Integration indicated Mid Partial Credit: $\cos 2 x$ integrated correctly $\left(\frac{\sin (2 x)}{2}\right)$ $-2 \sin 2 x$ and finishes correctly High Partial Credit: Substitutes limits into integral and stops Integral evaluated at $x=\frac{\pi}{4}$ (i.e. omits $\frac{1}{\frac{\pi}{4}-0}$) and finishes Note: errors in integration could include An error in the trig function (including sign) An error in the angle An error in the application of the chain rule Note: Must have integration to gain any credit

