Question 3

- (a) Let $h(x) = \cos(2x)$, where $x \in \mathbb{R}$. A tangent is drawn to the graph of h(x) at the point where $x = \frac{\pi}{3}$. Find the angle that this tangent makes with the positive sense of the x-axis.
- (b) Find the average value of h(x) over the interval $0 \le x \le \frac{\pi}{4}$, $x \in \mathbb{R}$. Give your answer in terms of π .

Q3	Model Solution – 25 Marks	Marking Notes
(a)	$h'(x) = -2\sin(2x)$ At $x = \frac{\pi}{3}$: $h'\left(\frac{\pi}{3}\right) = -2\sin\left(\frac{2\pi}{3}\right)$ $= -2\left(\frac{\sqrt{3}}{2}\right) = -\sqrt{3}$ $\tan \theta = -\sqrt{3}$ $\theta = 120^{\circ}$	Scale 10D (0, 3, 5, 8, 10)Low Partial Credit:Differentiation indicatedUse of 2Mid Partial Credit:Derivative foundHigh Partial Credit:tan θ = evaluated derivative $\theta = -60^{\circ}$ Note: Must use differentiation to gain any creditNote: If integration symbol appears then 0 credit
(b)	$\frac{1}{\frac{\pi}{4} - 0} \int_0^{\frac{\pi}{4}} \cos(2x) dx$ $= \frac{4}{\pi} \left(\frac{\sin(2x)}{2}\right) \int_0^{\frac{\pi}{4}} \frac{1}{2}$ $= \frac{4}{\pi} \left(\frac{\sin\frac{\pi}{2}}{2} - \frac{\sin 0}{2}\right)$ $= \frac{4}{\pi} \left(\frac{1}{2}\right) = \frac{2}{\pi}$	Scale 15D (0, 5, 7, 11, 15) <i>Low Partial Credit:</i> Integration indicated <i>Mid Partial Credit:</i> $\cos 2x$ integrated correctly $\left(\frac{\sin(2x)}{2}\right)$ $-2 \sin 2x$ and finishes correctly <i>High Partial Credit:</i> Substitutes limits into integral and stops Integral evaluated at $x = \frac{\pi}{4}$ (i.e. omits $\frac{1}{\frac{\pi}{4}-0}$) and finishes Note : errors in integration could include An error in the trig function (including sign) An error in the angle An error in the application of the chain rule Note : Must have integration to gain any credit