(a) The Sieve of Sundaram is an infinite table of arithmetic sequences.

The terms in the first 4 rows and the first 4 columns of the table are shown below.

4	7	10	13		
7	12	17	22		
10	17	24	31		
13	22	31	40		

(i) Find the difference between the sums of the first 45 terms in the first two rows.
(ii) Find the number which is in the $60^{\text {th }}$ row and $70^{\text {th }}$ column of the table.
(b) The first two terms of a sequence are $a_{1}=4$ and $a_{2}=2$.

The general term is defined by $a_{n}=a_{n-1}-a_{n-2}$, when $n \geq 3$.
Write out the next 6 terms of the sequence and hence find the value of a_{2019}

Q5	Model Solution - 25 Marks	Marking Notes
(a) (i)	$\begin{aligned} & \text { row } 2: S_{45}=\frac{45}{2}[14+44(5)]=5265 \\ & \text { row } 1: S_{45}=\frac{45}{2}[8+44(3)]=3150 \\ & \therefore \text { Difference }=2115 \end{aligned}$	Scale $10 \mathrm{C}(0,4,8,10)$ Low Partial Credit: Formulates S_{45} for row 1 or row 2 3+5+7 ... Identifies a or r for either row 1 or row 2 High Partial Credit: S_{45} found for row 1 or row 2 Full credit -1 : Fails to subtract
(a) (ii)	$\begin{aligned} & T_{1}(\text { in row } 60): T_{60}=4+(60-1) 3=181 \\ & T_{2}(\text { in row } 60)=T_{60} \text { of } 7,12,17,22 \ldots \\ & T_{60}=7+(60-1) 5=302 \\ & \therefore T_{70} \text { of } 181,302, \ldots \ldots \\ & =181+(70-1) 121=8530 \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: Identifies T_{60} in column 1 or T_{70} In row 1 or equivalent Some relevant substitution into correct formula Identifies a or d for either row 1 or row 2 Mid Partial Credit: Finds a in row 60 or row 70 Finds d in row 60 or row 70 High Partial Credit: Formulates substituted expression for T_{70} in row 60 or T_{60} in column 70 Finds both a and d in row 60 or row 70
(b)	$\begin{gathered} a_{3}=a_{2}-a_{1}=2-4=-2 \\ a_{4}=a_{3}-a_{2}=-2-2=-4 \\ a_{5}=a_{4}-a_{3}=-4-(-2)=-2 \\ a_{6}=a_{5}-a_{4}=-2-(-4)=2 \\ a_{7}=a_{6}-a_{5}=2-(-2)=4 \\ a_{8}=a_{7}-a_{6}=4-2=2 \end{gathered}$ Therefore, the sequence consists of a repeating pattern of $\begin{gathered} 4,2,-2,-4,-2,2 \\ \therefore a_{2016}=2(\text { multiple of } 6) \\ \Rightarrow a_{2019}=-2 \end{gathered}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: $\begin{aligned} & a_{3}=-2 \\ & a_{3}=a_{2}-a_{1} \text { or similar } \end{aligned}$ High Partial Credit: Any 4 from $a_{3}, a_{4}, a_{5}, a_{6}, a_{7}$ and a_{8} found Full credit -1 : $a_{3}, a_{4}, a_{5}, a_{6}$, and a_{2019} found

