Question 5 (25 marks) (a) The Sieve of Sundaram is an infinite table of arithmetic sequences. The terms in the first 4 rows and the first 4 columns of the table are shown below. | 4 | 7 | 10 | 13 | | |----|----|----|----|--| | 7 | 12 | 17 | 22 | | | 10 | 17 | 24 | 31 | | | 13 | 22 | 31 | 40 | | | | | | | | | | | | | | - (i) Find the difference between the sums of the first 45 terms in the first two rows. - (ii) Find the number which is in the 60th row and 70th column of the table. - (b) The first two terms of a sequence are $a_1=4$ and $a_2=2$. The general term is defined by $a_n=a_{n-1}-a_{n-2}$, when $n\geq 3$. Write out the next 6 terms of the sequence **and hence** find the value of a_{2019} | Q5 | Model Solution – 25 Marks | Marking Notes | |-------------|---|---| | (a)
(i) | row 2: $S_{45} = \frac{45}{2}[14 + 44(5)] = 5265$
row 1: $S_{45} = \frac{45}{2}[8 + 44(3)] = 3150$
∴ Difference = 2115 | Scale 10C (0, 4, 8, 10) Low Partial Credit: Formulates S_{45} for row 1 or row 2 3+5+7 Identifies a or r for either row 1 or row 2 High Partial Credit: S_{45} found for row 1 or row 2 Full credit -1 : Fails to subtract | | (a)
(ii) | $T_1(\text{in row }60)$: $T_{60} = 4 + (60 - 1)3 = 181$
$T_2(\text{in row }60) = T_{60} \text{ of } 7, 12, 17, 22 \dots$
$T_{60} = 7 + (60 - 1)5 = 302$
$\therefore T_{70} \text{ of } 181, 302, \dots \dots$
= 181 + (70 - 1)121 = 8530 | Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: Identifies T_{60} in column 1 or T_{70} In row 1 or equivalent Some relevant substitution into correct formula Identifies a or d for either row 1 or row 2 Mid Partial Credit: Finds a in row 60 or row 70 Finds d in row 60 or row 70 High Partial Credit: Formulates substituted expression for T_{70} in row 60 or T_{60} in column 70 Finds both a and d in row 60 or row 70 | | (b) | $a_{3} = a_{2} - a_{1} = 2 - 4 = -2$ $a_{4} = a_{3} - a_{2} = -2 - 2 = -4$ $a_{5} = a_{4} - a_{3} = -4 - (-2) = -2$ $a_{6} = a_{5} - a_{4} = -2 - (-4) = 2$ $a_{7} = a_{6} - a_{5} = 2 - (-2) = 4$ $a_{8} = a_{7} - a_{6} = 4 - 2 = 2$ Therefore, the sequence consists of a repeating pattern of $4, 2, -2, -4, -2, 2$ $\therefore a_{2016} = 2 \text{ (multiple of 6)}$ $\Rightarrow a_{2019} = -2$ | Scale 5C (0, 3, 4, 5) Low Partial Credit: $a_3=-2$ $a_3=a_2-a_1$ or similar High Partial Credit: Any 4 from a_3 , a_4 , a_5 , a_6 , a_7 and a_8 found Full credit -1 : a_3 , a_4 , a_5 , a_6 , and a_{2019} found |