Parts of the graphs of the functions $h(x)=x$ and $k(x)=x^{3}, x \in \mathbb{R}$, are shown in the diagram below.

(a) Find the co-ordinates of the points of intersection of the graphs of the two functions.
(b) (i) Find the total area enclosed between the graphs of the two functions.
(ii) On the diagram on the previous page, using symmetry or otherwise, draw the graph of k^{-1}, the inverse function of k.

Q6	Model Solution - 25 Marks	Marking Notes
	$\begin{gathered} x^{3}=x \\ \Rightarrow x^{3}-x=0 \\ \Rightarrow x\left(x^{2}-1\right)=0 \\ x(x-1)(x+1)=0 \\ x=0 \text { or } x= \pm 1 \\ (-1,-1),(0,0),(1,1) \end{gathered}$	Scale $10 C(0,4,8,10)$ Low Partial Credit: Equation written One correct solution from the graph Solution of the form (a, a) where $a \neq 0,1$ High Partial Credit: Equation factorised (3 factors) 2 correct points x values only
$\begin{aligned} & \text { (b) } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & 2 \int_{0}^{1} x-x^{3} d x \\ & =2\left[\frac{x^{2}}{2}-\frac{x^{4}}{4}\right]=2\left[\frac{1}{2}-\frac{1}{4}-0\right]= \\ & \frac{1}{2} \text { unit }^{2} \end{aligned}$	Scale $10 \mathrm{C}(0,4,8,10)$ Low Partial Credit: Integral indicated One relevant area found High Partial Credit: Integral evaluated at $x=1$ (upper limit) $\int_{-1}^{1} x-x^{3} d x=0$
(b) (ii)		Scale 5B (0, 2, 5) Partial Credit: Incomplete image 2 correct image points $k^{-1}(x)=x^{\frac{1}{3}}$

