Question 8

The graph of the symmetric function $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}$ is shown below.

(a) Find the co-ordinates of A, the point where the graph intersects the y-axis. Give your answer in terms of π.
(b) The co-ordinates of B are $\left(-1, \frac{1}{\sqrt{2 \pi e}}\right)$. Find the area of the shaded rectangle in the diagram above. Give your answer correct to 3 decimal places.
(c) Use calculus to show that $f(x)$ is decreasing at C.
(d) Show that the graph of $f(x)$ has a point of inflection at B.

Q8	Model Solution - 40 Marks	Marking Notes
(a)	$\begin{aligned} & f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} \\ & \text { At } x=0: f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(0)^{2}} \\ & =\frac{1}{\sqrt{2 \pi}}(1) \\ & \therefore\left(0, \frac{1}{\sqrt{2 \pi}}\right) \text { is the } y \text { intercept } \end{aligned}$	Scale $10 \mathrm{C}(0,4,8,10)$ Low Partial Credit: $x=0$ Value for x substituted into $f(x)$ High Partial Credit: $\frac{1}{\sqrt{2 \pi}}$ Full credit - 1 : $(0,0 \cdot 3989)$
(b)	$\begin{aligned} \text { Area }= & {\left[(2)\left(\frac{1}{\sqrt{2 \pi e}}\right)\right]=0.4839 } \\ & =0.484 \text { Units }^{2} \end{aligned}$	Scale $10 \mathrm{C}(0,4,8,10)$ Low Partial Credit: length $=2$ Width $=$ [y co-ordinate $]$ High Partial Credit: $\left[(1)\left(\frac{1}{\sqrt{2 \pi e}}\right)\right]$ Full credit -1: Area $=-0.484$ Zero Credit: Integrating original function
(c)	$C\left(1, \frac{1}{\sqrt{2 \pi e}}\right)$ due to symmetry $f^{\prime}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}(-x)$ $\begin{aligned} & \text { At } x=1: f^{\prime}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(1)^{2}}(-1)<0 \\ & {\left[=-\frac{1}{\sqrt{2 \pi e}}(-0 \cdot 24197)<0\right]} \end{aligned}$ \Rightarrow Decreasing	Scale $10 \mathrm{C}(0,4,8,10)$ Low Partial Credit: $x=1$ identified Some correct differentiation Indicates significance of $\frac{d y}{d x}<0$ High Partial Credit: Derivative found

(d)	$\begin{aligned} & f^{\prime}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}(-x) \\ & f^{\prime \prime}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}(-1) \\ & \quad \quad+(-x) \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}(-x) \\ & =\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}\left(x^{2}-1\right) \\ & f^{\prime \prime}(-1)=0 \text { as } 1^{2}-1=0 \\ & \Rightarrow \text { point of inflection at } x=-1 \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: $f^{\prime}(x)$ transferred or found Mention of $f^{\prime \prime}(x)$ Identifies $x=-1$ Mid Partial Credit: $f^{\prime \prime}(x)$ identified and some correct differentiation High Partial Credit: $f^{\prime \prime}(x)$ found Note: if the product rule and chain rule are not applied in finding $f^{\prime \prime}(x)$ then the candidate can be awarded mid partial credit at most

