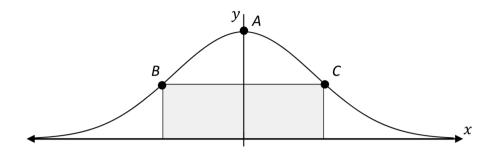
Question 8 (40 marks)

The graph of the **symmetric** function $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$ is shown below.



- (a) Find the co-ordinates of A, the point where the graph intersects the y-axis. Give your answer in terms of π .
- **(b)** The co-ordinates of *B* are $\left(-1, \frac{1}{\sqrt{2\pi e}}\right)$. Find the area of the shaded rectangle in the diagram above. Give your answer correct to 3 decimal places.
- (c) Use calculus to show that f(x) is decreasing at C.
- (d) Show that the graph of f(x) has a point of inflection at B.

Q8	Model Solution – 40 Marks	Marking Notes
(a)	$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$ At $x = 0$: $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(0)^2}$ $= \frac{1}{\sqrt{2\pi}} (1)$ $\therefore (0, \frac{1}{\sqrt{2\pi}}) \text{ is the } y \text{ intercept}$	Scale 10C (0, 4, 8, 10) Low Partial Credit: $x = 0$ Value for x substituted into $f(x)$ High Partial Credit: $\frac{1}{\sqrt{2\pi}}$ Full credit – 1: $(0, 0.3989)$
(b)	Area = $\left[(2) \left(\frac{1}{\sqrt{2\pi e}} \right) \right] = 0.4839$ = 0.484 Units^2	Scale 10C (0, 4, 8, 10) Low Partial Credit: length = 2 Width = [y co-ordinate] High Partial Credit: $\left[(1)(\frac{1}{\sqrt{2\pi e}}) \right]$ Full credit -1: Area = -0.484 Zero Credit: Integrating original function
(c)	$C(1, \frac{1}{\sqrt{2\pi e}}) \text{ due to symmetry}$ $f'(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} (-x)$ $At \ x = 1: \ f'(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(1)^2} (-1) < 0$ $\left[= -\frac{1}{\sqrt{2\pi e}} \ (-0.24197) \ < 0 \ \right]$ $\Rightarrow \text{Decreasing}$	Scale 10C (0, 4, 8, 10) Low Partial Credit: $x = 1$ identified Some correct differentiation Indicates significance of $\frac{dy}{dx} < 0$ High Partial Credit: Derivative found

$$f'(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}(-x)$$

$$f'(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} (-x)$$

$$f''(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} (-1)$$

$$+ (-x) \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} (-x)$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} (x^2 - 1)$$

$$f''(-1) = 0 \text{ as } 1^2 - 1 = 0$$

$$f''(-1) = 0$$
 as $1^2 - 1 = 0$

 \Rightarrow point of inflection at x = -1

Scale 10D (0, 3, 5, 8, 10)

Low Partial Credit: f'(x) transferred or found Mention of f''(x)Identifies x = -1

Mid Partial Credit:

f''(x) identified and some correct differentiation

High Partial Credit: f''(x) found

Note: if the product rule and chain rule are not applied in finding f''(x) then the candidate can be awarded mid partial credit at most