Question 1

(25 marks)
In a competition Mary has a probability of $\frac{1}{20}$ of winning, a probability of $\frac{1}{10}$ of finishing in second place, and a probability of $\frac{1}{4}$ of finishing in third place. If she wins the competition she gets $€ 9000$. If she comes second she gets $€ 7000$ and if she comes third she gets $€ 3000$. In all other cases she gets nothing. Each participant in the competition must pay $€ 2000$ to enter.
(a) Find the expected value of Mary's loss if she enters the competition.
(b) Each of the 3 prizes in the competition above is increased by the same amount ($£ x$) but the entry fee is unchanged.
For example, if Mary wins the competition now, she would get $€(9000+x)$.
Mary now expects to break even.
Find the value of x.

Q1	Model Solution - 25 Marks	Marking Notes
(a)	$\begin{gathered} \frac{1}{20}(9000)+\frac{1}{10}(7000)+\frac{1}{4}(3000) \\ =1900 \\ E(x)=2000-1900=100 \end{gathered}$ Or $\begin{aligned} & E(x)=\frac{1}{20}(-7000)+\frac{1}{10}(-5000) \\ & \quad+\frac{1}{4}(-1000)+\frac{3}{5}(2000) \\ & =-350-500-250+1200=100 \end{aligned}$ So expected gain for organisers of competition and therefore a loss for Mary of 100	Scale 15C (0, 4, 11, 15) Low Partial Credit: $E(x)$ partially formulated (1 or 2 terms) High Partial Credit: $E(x)$ fully formulated (sum of all three/all four terms)

(b)	$\begin{gathered} \frac{1}{20}(9000+x)+\frac{1}{10}(7000+x) \\ +\frac{1}{4}(3000+x)=2000 \\ \left(1900+\frac{8}{20} x\right)=2000 \\ \frac{8}{20} x=100 \\ x=250 \end{gathered}$ Or From (a) to break even it will take $€ 100$. $\begin{gathered} \frac{x}{20}+\frac{x}{10}+\frac{x}{4}=100 \\ \frac{x+2 x+5 x}{20}=100 \\ \frac{8}{20} x=100 \\ x=250 \end{gathered}$ Or $\begin{aligned} & E(x)=\frac{1}{20}(-7000-x) \\ & \quad+\frac{1}{10}(-5000-x) \\ & +\frac{1}{4}(-1000-x)+\frac{3}{5}(2000)=0 \\ & -7000-x-10000-2 x-5000-5 x \\ & +24000=0 \\ & 2000=8 x \Rightarrow 250=x \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: Any relevant use of x, excluding $(9000+x)$ Mid Partial Credit: $E(x)$ fully formulated (LHS). $\left(1900+\frac{8}{20} x\right)$ or equivalent and stops. $\frac{x}{20}+\frac{x}{10}+\frac{x}{4}$ High Partial Credit Relevant equation in x Low Partial Credit: Any relevant use of x e.g. $(-7000+x)$ Mid Partial Credit: $E(x)$ fully formulated (LHS). $\left(100-\frac{8}{20} x\right)$ or equivalent and stops. High Partial Credit Relevant equation in x

