Question 1

In a competition Mary has a probability of $\frac{1}{20}$ of winning, a probability of $\frac{1}{10}$ of finishing in second place, and a probability of $\frac{1}{4}$ of finishing in third place. If she wins the competition she gets \notin 9000. If she comes second she gets \notin 7000 and if she comes third she gets \notin 3000. In all other cases she gets nothing. Each participant in the competition must pay \notin 2000 to enter.

- (a) Find the **expected value** of Mary's loss if she enters the competition.
- (b) Each of the 3 prizes in the competition above is increased by the same amount (€x) but the entry fee is unchanged.
 For example, if Mary wins the competition now, she would get €(9000 + x).
 Mary now expects to break even.
 Find the value of x.

Q1	Model Solution – 25 Marks	Marking Notes
(a)	$\frac{1}{20}(9000) + \frac{1}{10}(7000) + \frac{1}{4}(3000)$ $= 1900$ $E(x) = 2000 - 1900 = 100$ Or $E(x) = \frac{1}{20}(-7000) + \frac{1}{10}(-5000)$ $+ \frac{1}{4}(-1000) + \frac{3}{5}(2000)$ $= -350 - 500 - 250 + 1200 = 100$ So expected gain for organisers of competition and therefore a loss for Mary of 100	Scale 15C (0, 4, 11, 15) Low Partial Credit: E(x) partially formulated (1 or 2 terms) High Partial Credit: E(x) fully formulated (sum of all three/all four terms)

(b)

$$\frac{1}{20} (9000 + x) + \frac{1}{10} (7000 + x) + \frac{1}{4} (3000 + x) = 2000$$

$$\frac{1}{4} (3000 + x) = 2000$$

$$\frac{1}{20} (1900 + \frac{8}{20} x) = 2000$$

$$\frac{1}{20} x = 100$$

$$\frac{1}{20} x = 250$$
Or
From (a) to break even it will take €100.

$$\frac{x}{20} + \frac{x}{10} + \frac{x}{4} = 100$$

$$\frac{1}{20} x = 250$$
Or

$$E(x) = \frac{1}{20} (-7000 - x)$$

$$+ \frac{1}{10} (-5000 - x)$$

$$+ \frac{1}{4} (-1000 - x) + \frac{3}{5} (2000) = 0$$

$$-7000 - x - 10 000 - 2x - 5000 - 5x$$

$$+ 24 000 = 0$$

$$2000 = 8x \Rightarrow 250 = x$$
Scale 10D (0, 3, 5, 8, 10)
Low Partial Credit:
Any relevant use of x, excluding (9000 + x)
Mid Partial Credit:
Relevant equation in x
Low Partial Credit:
Any relevant use of x e.g. (-7000 + x)
Mid Partial Credit:
E(x) fully formulated (LHS).
(100 - \frac{8}{20} x) or equivalent and stops.
High Partial Credit
Relevant equation in x