Question 3

(25 marks)
(a) A security code consists of six digits chosen at random from the digits 0 to 9 . The code may begin with zero and digits may be repeated.
For example

0	7	1	7	3	7
is a valid code.					

(i) Find how many of the possible codes will end with a zero.
(ii) Find how many of the possible codes will contain the digits 2018 together and in this order.
(b) Find a, b, c, and d, if $\frac{(n+3)!(n+2)!}{(n+1)!(n+1)!}=a n^{3}+b n^{2}+c n+d$, where a, b, c, and $d \in \mathbb{N}$.

Q3	Model Solution - 25 Marks	Marking Notes
(a) (i)	$10^{5} \times 1$ or 100000	Scale 15C (0, 4, 11, 15) Low Partial Credit: Some use of 10. Identifies that 5 other digits are required to complete code. High Partial Credit 9^{5} or equivalent 10^{6}
(a) (ii)	$\begin{gathered} 1 \times 10 \times 10+10 \times 1 \times 10+10 \times 10 \times 1 \\ 3 \times 10 \times 10 \text { or } 3 \times 10^{2} \text { or } 300 \end{gathered}$	Scale 5B (0, 2, 5) Partial Credit: 10×10
(b)	$\begin{gathered} \frac{(n+3)!(n+2)!}{(n+1)!(n+1)!}= \\ (n+3)(n+2)(n+2)= \\ n^{3}+7 n^{2}+16 n+12 \\ \text { Or } \\ \frac{(n+3)!(n+2)!}{(n+1)!(n+1)!}=a n^{3}+b n^{2}+c n+d \\ n=0 \rightarrow \frac{3!\cdot 2!}{1!1!}=12=d \\ n=1 \rightarrow a+b+c+d=36 \\ n=2 \rightarrow 8 a+4 b+2 c+d=80 \\ n=3 \rightarrow 27 a+9 b+3 c+d=150 \end{gathered}$ Solving the simultaneous equations $a=1, b=7, c=16, d=12$	Scale 5C (0, 2, 4, 5) Low Partial Credit: Factorial expansion (e.g. $(n+3)!=$ $(n+3)(n+2)(n+1) \ldots \ldots \ldots .1)$ Effort at a numerical value for n on both LHS and RHS (method 2) High Partial Credit: $(n+3)(n+2)(n+2)$ Four simultaneous equations

