Question 4

(a) Find all the values of x for which $\cos(2x) = -\frac{\sqrt{3}}{2}$, where $0^\circ \le x \le 360^\circ$.

(b) Let
$$\cos A = \frac{y}{2}$$
, where $0^{\circ} < A < 90^{\circ}$. Write $\sin(2A)$ in terms of y.

Q4	Model Solution – 25 Marks	Marking Notes
(a)	2x = 150 + 360n or 2x = 210 + 360n $x = 75 + 180n \qquad x = 105 + 180n$ $n = 0 \Longrightarrow x = 75^{\circ} \qquad n = 0 \Longrightarrow x = 105^{\circ}$ $n = 1 \Longrightarrow x = 255^{\circ} \qquad n = 1 \Longrightarrow x = 285^{\circ}$	Scale 20C (0, 7, 13, 20) Low Partial Credit: 30° or 150° or 210° High Partial Credit: 2 relevant values of x
(b)	$2^{2} = y^{2} + z^{2}$ $z = \sqrt{4 - y^{2}}$ sin2A = 2sinAcosA $2\left(\frac{\sqrt{4 - y^{2}}}{2}\right)\left(\frac{y}{2}\right)$ $= \frac{y\sqrt{4 - y^{2}}}{2}$ Or $sin2A = \frac{2 tanA}{1 + tan^{2}A}$ $\frac{2\sqrt{4 - y^{2}}}{1 + \frac{4 - y^{2}}{y^{2}}} = \frac{2y\sqrt{4 - y^{2}}}{y^{2} + 4 - y^{2}} = \frac{y\sqrt{4 - y^{2}}}{2}$	Scale 5C (0, 2, 4, 5) Low Partial Credit: $\sqrt{4-y^2}$ 2sinAcosA without substitution sin2A expressed in tan A format Relevant labelled diagram (2, y, A) High Partial Credit: Substitution for sin A or cos A in formula sin $A = \left(\frac{\sqrt{4-y^2}}{2}\right)$ tan $A = \frac{\sqrt{4-y^2}}{y}$