Question 5

The line m: 2x + 3y + 1 = 0 is parallel to the line n: 2x + 3y - 51 = 0.

- (a) Verify that A(-2, 1) is on m.
- (b) Find the coordinates of *B*, the point on the line *n* closest to *A*, as shown below.

(c) Two touching circles, s and t, are shown in the diagram. m is a tangent to s at A and n is a tangent to t at B. The ratio of the radius of s to the radius of t is 1 : 3. Find the equation of s.

Q5	Model Solution – 25 Marks	Marking Notes
(a)	2(-2) + 3(1) + 1 = 0 or $-4 + 3 + 1 = 0$	<pre>Scale 10C (0, 3, 7, 10) Low Partial Credit: Substitution for x or y in equation of line High Partial Credit: Substitution for x and y in eq. of line (LHS when no indication of 0)</pre>
(b)	Slope of <i>m</i> or $n = \frac{-2}{3}$ Slope of <i>AB</i> is $\frac{3}{2}$ and (-2, 1) is on <i>AB</i> $y - 1 = \frac{3}{2}(x - (-2))$ equation of <i>AB</i> is $3x - 2y + 8 = 0$ Solve for (x, y) between 3x - 2y + 8 = 0 and $2x + 3y - 51 = 0n \cap AB = (6, 13) = BOr$	 Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: Slope of AB Equation of line formula with some substitution Mid Partial Credit: Equation of AB High Partial Credit: Effort at finding intersection of lines Note: Point of intersection, found correctly, of n and a relevant AB (with errors) merits Mid Partial Credit at least.
	coordinates of $B(x, y)$ $ AB = \sqrt{(x+2)^2 + (y-1)^2}$ Perp. distance (-2, 1) to $2x + 3y - 51 = 0$ $\left \frac{-4 + 3 - 51}{\sqrt{13}}\right = \frac{52}{\sqrt{13}} = 4\sqrt{13}$ $\therefore (x+2)^2 + (y-1)^2 = (4\sqrt{13})^2$ Substituting $x = \frac{1}{2}(-3y + 51)$ $(\frac{-3y + 55}{2})^2 + (y-1)^2 = (4\sqrt{13})^2$ $13y^2 - 338y + 2197 = 0$ $y^2 - 26y + 169 = 0$ $(y - 13)^2 = 0 \rightarrow y = 13$ $n \cap AB = (6, 13) = B$	<u>Method 2</u> Low Partial Credit: Perpendicular distance formula with some substitution Distance formula with some substitution <i>Mid Partial Credit:</i> Quadratic equation in x and y <i>High Partial Credit:</i> Quadratic equation in either x or y

(c)

$$\overline{AB} = x \text{ up } 8 \text{ and } y \text{ up } 12$$
Centre of s is $\frac{1}{8}(8) - 2 = -1 = h$
and $\frac{1}{6}(12) + 1 = 2 \cdot 5 = k$
Eqn s: $(x + 1)^2 + (y - 2 \cdot 5)^2 = \left(\frac{\sqrt{13}}{2}\right)^2$
Dr

$$\frac{s \cap t}{(\frac{3(-2) + 1(6)}{3 + 1}, \frac{3(1) + 1(13)}{3 + 1}\right) = (0, 4)}{0r}$$
Centre s: $\left(\frac{-2}{2}, \frac{4+1}{2}\right) = (-1, 2 \cdot 5)$
Radius : distance $(-1, 2 \cdot 5)$ to either $(-2, 1)$ or
 $(0, 4) \text{ or calculated otherwise } \sqrt{3 \cdot 25} \text{ or } \frac{\sqrt{13}}{2}$
Dr
using ratio 1 : 7 centre s:
 $\left(\frac{1(6) + 7(-2)}{1 + 7}, \frac{1(13) + 7(1)}{1 + 7}\right) = (-1, 2 \cdot 5)$
Radius as above or $\frac{1}{8}|AB| = \frac{\sqrt{13}}{2}$
 $(x + 1)^2 + (y - 2 \cdot 5)^2 = \left(\frac{\sqrt{13}}{2}\right)^2$
How Partial Credit:
Some relevant use of 1 : 3
Midpoint of AB found once but no further
work of relevance
Formula with some relevant substitution
High Partial Credit:
Centre and radius of circle
Low Partial Credit:
Centre and radius of circle
High Partial Credit:
Centre and radius of circle
High Partial Credit:
Centre and radius of circle
(x + 1)^2 + (y - 2 \cdot 5)^2 = \left(\frac{\sqrt{13}}{2}\right)^2
Low Partial Credit:
Come relevant use of 1 : 7
Formula with some relevant substitution
High Partial Credit:
Centre and radius of circle
(x + 1)^2 + (y - 2 \cdot 5)^2 = \left(\frac{\sqrt{13}}{2}\right)^2