Question 5

The line $m: 2 x+3 y+1=0$ is parallel to the line $n: 2 x+3 y-51=0$.
(a) Verify that $A(-2,1)$ is on m.
(b) Find the coordinates of B, the point on the line n closest to A, as shown below.

(c) Two touching circles, s and t, are shown in the diagram. m is a tangent to s at A and n is a tangent to t at B. The ratio of the radius of s to the radius of t is $1: 3$. Find the equation of s.

Q5	Model Solution - 25 Marks	Marking Notes
(a)	$\begin{aligned} & 2(-2)+3(1)+1=0 \\ & \text { or }-4+3+1=0 \end{aligned}$	Scale 10C (0, 3, 7, 10) Low Partial Credit: Substitution for x or y in equation of line High Partial Credit: Substitution for x and y in eq. of line (LHS when no indication of 0)
(b)	Slope of m or $n=\frac{-2}{3}$ Slope of $A B$ is $\frac{3}{2}$ and $(-2,1)$ is on $A B$ $y-1=\frac{3}{2}(x-(-2))$ equation of $A B$ is $3 x-2 y+8=0$ Solve for (x, y) between $\begin{aligned} & 3 x-2 y+8=0 \text { and } 2 x+3 y-51=0 \\ & n \cap A B=(6,13)=B \end{aligned}$ Or coordinates of $B(x, y)$ $\|A B\|=\sqrt{(x+2)^{2}+(y-1)^{2}}$ Perp. distance $(-2,1)$ to $2 x+3 y-51=0$ $\begin{aligned} & \left\|\frac{-4+3-51}{\sqrt{13}}\right\|=\frac{52}{\sqrt{13}}=4 \sqrt{13} \\ \therefore & (x+2)^{2}+(y-1)^{2}=(4 \sqrt{13})^{2} \end{aligned}$ Substituting $x=\frac{1}{2}(-3 y+51)$ $\begin{aligned} & \left(\frac{-3 y+55}{2}\right)^{2}+(y-1)^{2}=(4 \sqrt{13})^{2} \\ & 13 y^{2}-338 y+2197=0 \\ & y^{2}-26 y+169=0 \\ & (y-13)^{2}=0 \rightarrow y=13 \\ & n \cap A B=(6,13)=B \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: Slope of $A B$ Equation of line formula with some substitution Mid Partial Credit: Equation of $A B$ High Partial Credit: Effort at finding intersection of lines Note: Point of intersection, found correctly, of n and a relevant $A B$ (with errors) merits Mid Partial Credit at least. Method 2 Low Partial Credit: Perpendicular distance formula with some substitution Distance formula with some substitution Mid Partial Credit: Quadratic equation in x and y High Partial Credit: Quadratic equation in either x or y

